a. 46 m/s east
The jet here is moving with a uniform accelerated motion, so we can use the following suvat equation to find its velocity:

where
v is the velocity calculated at time t
u is the initial velocity
a is the acceleration
The jet in the problem has, taking east as positive direction:
u = +16 m/s is the initial velocity
is the acceleration
Substituting t = 10 s, we find the final velocity of the jet:
And since the result is positive, the direction is east.
b. 310 m
The displacement of the jet can be found using another suvat equation
where
s is the displacement
u is the initial velocity
a is the acceleration
t is the time
For the jet in this problem,
u = +16 m/s is the initial velocity
is the acceleration
t = 10 s is the time
Substituting into the equation,

When two mechanical waves that have positive displacements from the equilibrium position meet and coincide, a constructive interference occurs.
Option A
<h3><u>
Explanation:</u></h3>
Considering the principle of superposition of waves; the resultant amplitude of an output wave due to interference of two or more waves at any point is given by individual addition of their amplitudes at that point. Two waves with positive displacements refer to the fact that crest of the both the waves are on the same side of displacement axis, either both are positive or both are negative, similarly with their troughs.
If such two waves with their crest on crest meet at any point, by superposition principle. their individual amplitude gets added up and hence the resultant wave after interference is greater in amplitude that both the individual waves. This is termed as a constructive interference. Destructive interference on the other hand is a condition when one of the two waves has a positive displacement and other has a negative displacement (a condition of one’s crest on other’s trough); resulting in amplitude subtraction.
Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.