When the moon is waxing it means that the sunlit fraction we can see from earth is getting larger. when it is wanning, the sunlit fraction is getting smaller and even as the phases of the moon change the total amount of sunlight the moon gets remains the same. half the moon is always in sunlight just as half the earth is always in sunlight. but because the period of rotation for the moon is the same as its period of revolution, on earth we always see the same side of the moon. If you lived on the far side of the moon, you would see the sun for half of each lunar day, but you would never see the earth.
Answer:
a) 6.4 x 10^-12 cm^3
b) 17 x 10^-6 mm^2
Explanation
a). The shape is assumed to be spherical The volume = volume of a sphere = \frac{4}{3} \pi r^3
3
4
πr
3
V = \frac{4}{3}*3.142* 1.15^3
3
4
∗3.142∗1.15
3
= 6.3715 μm^3
1 μm^3 = 10^-12 cm^3
6.3715 μm^3 = 6.3715 x 10^-12 cm^3
==> 6.4 x 10^-12 cm^3
Answer:
The correct answer is d
Explanation:
In this exercise they ask us which statement is correct, for this we plan the solution of the problem, this is a Doppler effect problem, it is the frequency change due to the relative speed between the emitter and the receiver of sound.
The expression for the Doppler effect of a moving source is
f ’= (v / (v- + v_s) f
From this expression we see that if the speed the sound source is different from zero feels a change in the frequency.
The correct answer is d
Explanation:
q= n e
6 × 10^-11 = n (1.6 × 10^-19)
n = 6×10^-11 / 1.6 × 10^-19
n= 3.75 × 10⁸ electrons
True. If the amount displaced is more than the mass, it floats. If the amount is less than the mass, it will sink.