Answer:
pressure and temperature (assuming volume is constant)
Explanation:
Answer: i think it’s plant and glass
Explanation:
False. Radio waves<span> have much longer </span>wavelengths<span> and lower frequencies </span>than<span> </span><span>visible light waves</span>
Answer:
(a) the speed of the block after the bullet embeds itself in the block is 3.226 m/s
(b) the kinetic energy of the bullet plus the block before the collision is 500J
(c) the kinetic energy of the bullet plus the block after the collision is 16.13J
Explanation:
Given;
mass of bullet, m₁ = 0.1 kg
initial speed of bullet, u₁ = 100 m/s
mass of block, m₂ = 3 kg
initial speed of block, u₂ = 0
Part (A)
Applying the principle of conservation linear momentum, for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
v is the speed of the block after the bullet embeds itself in the block
(0.1 x 100) + (3 x 0) = v (0.1 + 3)
10 = 3.1v
v = 10/3.1
v = 3.226 m/s
Part (B)
Initial Kinetic energy
Ki = ¹/₂m₁u₁² + ¹/₂m₂u₂²
Ki = ¹/₂(0.1 x 100²) + ¹/₂(3 x 0²)
Ki = 500 + 0
Ki = 500 J
Part (C)
Final kinetic energy
Kf = ¹/₂m₁v² + ¹/₂m₂v²
Kf = ¹/₂v²(m₁ + m₂)
Kf = ¹/₂ x 3.226²(0.1 + 3)
Kf = ¹/₂ x 3.226²(3.1)
Kf = 16.13 J
By definition we have that the final speed is:
Vf² = Vo² + 2 * a * d
Where,
Vo: Final speed
a: acceleration
d: distance.
We cleared this expression the acceleration:
a = (Vf²-Vo²) / (2 * d)
Substituting the values:
a = ((0) ^ 2- (60) ^ 2) / ((2) * (123) * (1/5280))
a = -77268 mi / h ^ 2
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is:
First you must make a free body diagram and see the acceleration of the car:
g = 32.2 feet / sec ^ 2
a = -77268 (mi / h ^ 2) * (5280/1) (feet / mi) * (1/3600) ^ 2 (h / s) ^ 2
a = -31.48 feet / sec ^ 2
A = a + g * sin (θ) = -31.48 + 32.2 * sin17.0
A = -22.07 feet / sec ^ 2
Clearing the braking distance:
Vf² = Vo² + 2 * a * d
d = (Vf²-Vo²) / (2 * a)
Substituting the values:
d = ((0) ^ 2- (60 * (5280/3600)) ^ 2) / (2 * (- 22.07))
d = 175.44 feet
answer:
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is 175.44 feet