Answer:
The O is being oxidized, but at the same time, is being reducted.
Explanation:
H₂O₂(l) + ClO₂(aq) → ClO₂(aq) + O₂(g)
In this reaction, we have 4 compounds:
Hydrogen peroxide
Chlorine dioxide (twice)
Oxygen
In both dioxide, the Cl acts with +4 in oxidation state; the oxygen acts with -2.
Oxgen in ground state has 0, as oxidation number.
In peroxide, the H acts with +1 but the oxygen acts with -1.
Peroxide is making the oxidation number from the O in the ClO₂, to decrease (reduction) and to increase in the O, at the ground state.
Hydrogen peroxide is a good reducing and oxidizing agent at the same time.
Answer:
Water
Explanation:
Hydrogen and oxygen is bonded together to make H2O aka. water
Answer: 99.45 g
Explanation: we have 22.5 g of Platinum in every 1cm3 of Platinum so if we take 4.42 cm3 of Platinum we will have 4.42 × 22.5 g = 99.45 g of Platinum
31
A dalton is the same as an atomic mass unit. And an atomic mass unit is approximately the mass of a nucleon (proton or neutron) such that the mass is 1 g/mol. So in this problem you have 15 protons and 16 neutrons, so the number of daltons is 15 + 16 = 31.
<span>NaCl is poster-compound for ionic bonding. The bonds in NaCl have about 70% ionic character, making the bond highly polar. its overstatement to state that there is actual ion in NaCl with +1 and -1 charge but actual charge of Na and Cl is +1 and -1 ion, since Nacl exist as a network of highly charged particle and not discrete molecule, NaCl particle does not exhibit intermolecular forces.
Water molecule on other hand exhibit London dispersion force, keesom force, and hydrogen bonding.
The polar water molecule are attracted to the polarized Na and Cl atoms. This is what allow NaCl(s) to dissolve and ionize in water. Therefore type of attraction in NaCl is ion-dipole attraction.</span>