There are none on the list you included with your question.
The wavelengths of radio waves are much "Longer" than the wavelength of microwaves therefore, radio waves carry much "Lower" <span>energy than a microwave.
Hope this helps!</span>
To reach a vertical height of 13.8 ft against gravity, which has an acceleration of 32 ft/s^2, the required vertical speed can be calculated from the equation:
vi^2 - vf^2 = 2*g*h
Given that it has vf = 0 (it is not moving vertically at its maximum height), g = 32, and h = 13.8, we can solve for vi:
vi^2 = 29.72 ft/s
This is only its vertical speed, so this is equivalent to its original speed multiplied by the sine of the angle:
29.72 ft/s = (v_original)*(sin 42.2<span>°</span>)
v_original = 44.24 ft/s
Converting to m/s, this can be divided by 3.28 to get 13.49 m/s.
The term is frequency.
The frequency is the number of vibrations per unit of time or the number of waves that passes a point per unit of time.
Every crest (and every trough) represents a pass of the wave so you can count the number of crests in an intervavl of time to find the frequency as the number of crests divided by the time elapsed.
Answer:
<u><em>375 J</em></u>
Explanation:
<u><em>Total energy</em></u> = 750 J
<u><em>Efficiency</em></u> = 50%
<u><em>Wasted energy</em></u> = 50% [100% - 50%]
<u><em>Amount of wasted energy</em></u>
= 750 x 50%
= 750 x 0.5
= 375 J