1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
11

A seawall with an opening is used to dampen the tidal influence in a coastal area (and limit erosion). The seawall is 2.5 m long

(in the direction perpendicular to the page), the mean sea level on the sea side is 2.2 m above the centroid of the slot. The mean sea level on the land side of the wall is 1.4 m above the centroid of the slot. The sea side tide fluctuates +0.6 m, and the landward tide fluctuates +0.4 m.
The slot extends the entire length of the wall and is estimated to have a discharge coefficient of 0.80.


If the volume of seawater moving from the sea side to the land side of the wall is to be no more than 6 000 m' in 18 hours, what is the maximum allowable height of the slot?


Note: the discharge coefficient is the ratio of the actual flow rate over the predicted flow rate. It mostly accounts for the fact that the average velocity is different from the velocity.
Engineering
1 answer:
raketka [301]3 years ago
3 0

Answer:

The maximum allowable Height of the slot is 11.685mm

Explanation:

The explanation is attached. The approach used is Bernoulli's equation

Download pdf
You might be interested in
In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
Zolol [24]

Answer:

Kindly note that, you're to replace "at" with shift 2 as the brainly text editor can't take the symbol

Explanation:

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.layout.VBox;

import javafx.scene.layout.HBox;

import javafx.scene.control.TextField;

import javafx.scene.control.Button;

public class Calculator extends Application {

public static void main(String[] args) {

// TODO Auto-generated method stub

launch(args);

}

"at"Override

public void start(Stage primaryStage) throws Exception {

// TODO Auto-generated method stub

Group root = new Group();

VBox mainBox = new VBox();

HBox inpBox = new HBox();

TextField txtInput = new TextField ();

txtInput.setEditable(false);

txtInput.setStyle("-fx-font: 20 mono-spaced;");

txtInput.setText("0.0");

txtInput.setMinHeight(20);

txtInput.setMinWidth(200);

inpBox.getChildren().add(txtInput);

Scene scene = new Scene(root, 200, 294);

mainBox.getChildren().add(inpBox);

HBox rowOne = new HBox();

Button btn7 = new Button("7");

btn7.setMinWidth(50);

btn7.setMinHeight(50);

Button btn8 = new Button("8");

btn8.setMinWidth(50);

btn8.setMinHeight(50);

Button btn9 = new Button("9");

btn9.setMinWidth(50);

btn9.setMinHeight(50);

Button btnDiv = new Button("/");

btnDiv.setMinWidth(50);

btnDiv.setMinHeight(50);

rowOne.getChildren().addAll(btn7,btn8,btn9,btnDiv);

mainBox.getChildren().add(rowOne);

HBox rowTwo = new HBox();

Button btn4 = new Button("4");

btn4.setMinWidth(50);

btn4.setMinHeight(50);

Button btn5 = new Button("5");

btn5.setMinWidth(50);

btn5.setMinHeight(50);

Button btn6 = new Button("6");

btn6.setMinWidth(50);

btn6.setMinHeight(50);

Button btnMul = new Button("*");

btnMul.setMinWidth(50);

btnMul.setMinHeight(50);

rowTwo.getChildren().addAll(btn4,btn5,btn6,btnMul);

mainBox.getChildren().add(rowTwo);

HBox rowThree = new HBox();

Button btn1 = new Button("1");

btn1.setMinWidth(50);

btn1.setMinHeight(50);

Button btn2 = new Button("2");

btn2.setMinWidth(50);

btn2.setMinHeight(50);

Button btn3 = new Button("3");

btn3.setMinWidth(50);

btn3.setMinHeight(50);

Button btnSub = new Button("-");

btnSub.setMinWidth(50);

btnSub.setMinHeight(50);

rowThree.getChildren().addAll(btn1,btn2,btn3,btnSub);

mainBox.getChildren().add(rowThree);

HBox rowFour = new HBox();

Button btnC = new Button("C");

btnC.setMinWidth(50);

btnC.setMinHeight(50);

Button btn0 = new Button("0");

btn0.setMinWidth(50);

btn0.setMinHeight(50);

Button btnDot = new Button(".");

btnDot.setMinWidth(50);

btnDot.setMinHeight(50);

Button btnAdd = new Button("+");

btnAdd.setMinWidth(50);

btnAdd.setMinHeight(50);

rowFour.getChildren().addAll(btnC,btn0,btnDot,btnAdd);

mainBox.getChildren().add(rowFour);

HBox rowFive = new HBox();

Button btnEq = new Button("=");

btnEq.setMinWidth(200);

btnEq.setMinHeight(50);

rowFive.getChildren().add(btnEq);

mainBox.getChildren().add(rowFive);

root.getChildren().add(mainBox);

primaryStage.setScene(scene);

primaryStage.setTitle("GUI Calculator");

primaryStage.show();

}

}

4 0
3 years ago
Air pressure is higher above an airfoil.<br> true or false
attashe74 [19]

Answer: true

Explanation:

it flows faster over the top of the wing because the top is more curved than the bottom of the wing. However

6 0
3 years ago
determine the position d of the 6- kn load so that the average normal stress in each rod is the same.
Zinaida [17]

The load is placed at distance 0.4 L from the end of $$12 \mathrm{~mm}^{2} $ area.

<h3>What is meant by torque?</h3>

The force that can cause an object to rotate along an axis is measured as torque. Similar to how force accelerates an item in linear kinematics, torque accelerates an object in an angular direction. A vector quantity is torque.

Let the beam is of length L

Now the stress on both the end is the same now we can say that torque on the beam due to two forces must be zero

$N_1 * x=N_2 *(L-x)$

also, we know that stress at both ends are same

$\frac{N_1}{12}=\frac{N_2}{8}$

$2 * N_1=3 * N_2$

Now from two equations we have

$\frac{3}{2} N_2 * x=N_2 *(L-x)

solving the above equation we have

$x=\frac{2}{5} L

so the load is placed at distance 0.4 L from the end of $$12 \mathrm{~mm}^{2} $ area.

The complete question is:

47. the beam is supported by two rods ab and cd that have cross-sectional areas of $$12mm^2 and $$8mm^2, respectively. determine the position d of the 6-kn load so that the average normal stress in each rod is the same.

To learn more about torque refer to:

brainly.com/question/20691242

#SPJ4

7 0
2 years ago
If the specific surface energy for aluminum oxide is 0.90 J/m2 and its modulus of elasticity is (393 GPa), compute the critical
vampirchik [111]

Answer:

critical stress required for the propagation is 27.396615 ×10^{6} N/m²

Explanation:

given data

specific surface energy = 0.90 J/m²

modulus of elasticity E = 393 GPa = 393 ×10^{9} N/m²

internal crack length = 0.6 mm

to find out

critical stress required for the propagation

solution

we will apply here critical stress formula for propagation of internal crack

( σc ) = \sqrt{\frac{2E\gamma s}{\pi a}}    .....................1

here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm  = 0.3 ×10^{-3} m

so now put value in equation 1 we get

( σc ) = \sqrt{\frac{2E\gamma s}{\pi a}}

( σc ) = \sqrt{\frac{2*393*10^9*0.90}{\pi 0.3*10^{-3}}}

( σc ) = 27.396615 ×10^{6} N/m²

so critical stress required for the propagation is 27.396615 ×10^{6} N/m²

6 0
3 years ago
Maintain a distance of at least
Virty [35]
The answer is c. 4 seconds
8 0
3 years ago
Read 2 more answers
Other questions:
  • Practice Problem: True Stress and Strain A cylindrical specimen of a metal alloy 49.9 mm long and 9.72 mm in diameter is stresse
    13·1 answer
  • Make sure that the switch is on (if the drill is electric), the chuck key is not removed before you plug in the drill or turn it
    11·2 answers
  • An R-134a refrigeration system is operating with an evaporator pressure of 200 kPa. The refrigerant is 10% in vapor phase at the
    15·1 answer
  • When diagnosing engine noise, Technician A says a mechanical stethoscope may not be appropriate in pinpointing a squeaking drive
    14·1 answer
  • Consider two different types of motors. Motor A has a characteristic life of 4100 hours (based on a MTTF of 4650 hours) and a sh
    10·1 answer
  • Water flowing through both a small pipe and a large pipe can fill a water tank in 4 hours. Water flowing through the small pipe
    5·1 answer
  • Heating of Oil by Air. A flow of 2200 lbm/h of hydrocarbon oil at 100°F enters a heat exchanger, where it is heated to 150°F by
    7·1 answer
  • Products. of sheet metal​
    8·1 answer
  • True or false the camshaft is always located in the engine block
    10·1 answer
  • A magnesium oxide component must not fail when a tensile stress of 14 MPa is applied. Determine the maximum allowable surface cr
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!