So you just take 100% - 29% = 71%
So 71% of the students did not wear jeans
Answer:
1) (x + 3)(3x + 2)
2) x= +/-root6 - 1 by 5
Step-by-step explanation:
3x^2 + 11x + 6 = 0 (mid-term break)
using mid-term break
3x^2 + 9x + 2x + 6 = 0
factor out 3x from first pair and +2 from the second pair
3x(x + 3) + 2(x + 3)
factor out x+3
(x + 3)(3x + 2)
5x^2 + 2x = 1 (completing squares)
rearrange the equation
5x^2 + 2x - 1 = 0
divide both sides by 5 to cancel out the 5 of first term
5x^2/5 + 2x/5 - 1/5 = 0/5
x^2 + 2x/5 - 1/5 = 0
rearranging the equation to gain a+b=c form
x^2 + 2x/5 = 1/5
adding (1/5)^2 on both sides
x^2 + 2x/5 + (1/5)^2 = 1/5 + (1/5)^2
(x + 1/5)^2 = 1/5 + 1/25
(x + 1/5)^2 = 5 + 1 by 25
(x + 1/5)^2 = 6/25
taking square root on both sides
root(x + 1/5)^2 = +/- root(6/25)
x + 1/5 = +/- root6 /5
shifting 1/5 on the other side
x = +/- root6 /5 - 1/5
x = +/- root6 - 1 by 5
x = + root6 - 1 by 5 or x= - root6 - 1 by 5
Answer:
A). 50 penny
B) This type of battery is cost effective.
Step-by-step explanation:
A) A pack of 8 batteries cost 3.99 pounds so one battery will cost = 3.99/8 = 0.499 pound
Since 1 pound = 100 penny
So 0.499 pound = 100×0.499 = 50 penny
B). A pack of 6 batteries of the same type costs 2.79 pounds
So one battery will cost = 2.79/6 = 0.465 pound or 47 penny
Now we say that type A batteries are costlier than B. Therefore B type batteries are of a better value.
Answer:
(a)123 km/hr
(b)39 degrees
Step-by-step explanation:
Plane X with an average speed of 50km/hr travels for 2 hours from P (Kano Airport) to point Q in the diagram.
Distance = Speed X Time
Therefore: PQ =50km/hr X 2 hr =100 km
It moves from Point Q at 9.00 am and arrives at the airstrip A by 11.30am.
Distance, QA=50km/hr X 2.5 hr =125 km
Using alternate angles in the diagram:

(a)First, we calculate the distance traveled, PA by plane Y.
Using Cosine rule

SInce aeroplane Y leaves kano airport at 10.00am and arrives at 11.30am
Time taken =1.5 hour
Therefore:
Average Speed of Y

(b)Flight Direction of Y
Using Law of Sines
![\dfrac{p}{\sin P} =\dfrac{q}{\sin Q}\\\dfrac{125}{\sin P} =\dfrac{184.87}{\sin 110}\\123 \times \sin P=125 \times \sin 110\\\sin P=(125 \times \sin 110) \div 184.87\\P=\arcsin [(125 \times \sin 110) \div 184.87]\\P=39^\circ $ (to the nearest degree)](https://tex.z-dn.net/?f=%5Cdfrac%7Bp%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7Bq%7D%7B%5Csin%20Q%7D%5C%5C%5Cdfrac%7B125%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7B184.87%7D%7B%5Csin%20110%7D%5C%5C123%20%5Ctimes%20%5Csin%20P%3D125%20%5Ctimes%20%5Csin%20110%5C%5C%5Csin%20P%3D%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5C%5CP%3D%5Carcsin%20%5B%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5D%5C%5CP%3D39%5E%5Ccirc%20%24%20%28to%20the%20nearest%20degree%29)
The direction of flight Y to the nearest degree is 39 degrees.