Answer:
Oxygen in hydrogen peroxide oxidizes from -1 to 0.
Explanation:
Oxidation is the loss of electrons. The specie which is oxidized has has elevation in its oxidation state as compared in the reactant and the products.
The given reaction is shown below as:

Manganese in
has oxidation state of +7
Manganese in
has an oxidation state of +2
It reduces from +7 to +2
Oxygen in hydrogen peroxide has an oxidation state of -1.
Oxygen in molecular oxygen has an oxidation of 0.
Thus, oxygen in hydrogen peroxide oxidizes from -1 to 0.
It is -2 because the charge will be at zero and electrons lower the charge
<u>Answer 2 :</u> The given electronic configuration for a neutral atom of phosphorous in its ground state is incorrect.
Explanation :
A neutral atom of phosphorous has 15 electrons.
The given electronic configuration is incorrect.
The reason is, According to Aufbau principle, the electrons will be first filled in the sub-shell having lower orbital energy. As from the given configuration, 3p sub-shell has lower orbital energy than 4s sub-shell. So, the electrons will be filled in 3p sub-shell first. Hence, the ground state electronic configuration of neutral atom of phosphorous is,

<u>Answer 3 :</u>
Element Rubidium Magnesium Aluminium
Symbol Rb Mg Al
Group number 1 2 13
Number of valence 1 2 3
electrons
The order of general reactivity on the basis of number of valence electrons.
Rb > Mg > Al
Reason : The reactivity is determined by the number of electrons present in the outermost shell that means the element which have 1 valence electron will be more reactive because they can easily lose electrons.
Answer:
619°C
Explanation:
Given data:
Initial volume of gas = 736 mL
Initial temperature = 15.0°C
Final volume of gas = 2.28 L
Final temperature = ?
Solution:
Initial volume of gas = 736 mL (736mL× 1L/1000 mL = 0.736 L)
Initial temperature = 15.0°C (15+273 = 288 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 2.28 L × 288 K / 0.736 L
T₂ = 656.6 L.K / 0.736 L
T₂ = 892.2 K
K to °C:
892.2 - 273.15 = 619°C
Answer:
17
Explanation:
what is the independent variable