From the pair of values given, the ratio of the volume to the temperature for the first data pair is, 0.0026 cm³/K
<h3>What is a Ratio?</h3>
A ratio is a comparison between two quantities showing how much one quantity differs from another.
From the data given, the first data pair is as follows ;
- Temperature = 276 K
- Volume = 0.72 cm³
Ratio of volume to temperature = volume / temperature
Ratio = 0.72 / 276
Ratio = 0.002608 cm³/K
The significant figure's rule for division is the least number of significant figures used in the operation.
The least significant figure of the values given is 2.
Therefore, the ratio of the volume to the temperature for the first data pair is 0.0026 cm³/K
Learn more about ratio here :
brainly.com/question/25927869
#SPJ1
TLDR: 6.53x10^5 g NH4ClO4
The stoichiometric coefficients (the numbers in front of the reactants and products) show that Aluminum and Ammonium Perchlorate are consumed at the exact same rate throughout the reaction: 3 parts of one to 3 parts of another.
1.5x10^5 grams of Aluminum, considering that the formula weight of Aluminum is 26.98 g/mol, is equal to 5,559.7 moles of Aluminum. This means that 5,559.7 moles of Ammonium Perchlorate are required to run the reaction to completion.
The formula weight of Ammonium Perchlorate is 117.49 grams a mole, and multiplying it by 5,559.7 moles to react to completion means that 6.53x10^5 grams of Ammonium Perchlorate is required for the reaction.
You can tell that the atom is in the excited state because:
- Electron configuration should follow the 2-8-8-2 rule, meaning that the inner shell should be filled before the next shell can start holding electrons.
- Instead of the atom's electron configuration being in the ground state at 2-8-8-1, electrons from the second shell have jumped to the third.
Explanation:
The first wave was found to have a wavelength of 3 x 10⁵ m and the second wave had a wavelength of 3 x 10⁴ m
We need to find which wave have a higher frequency.
The relation between frequency and wavelength is given by :

Let f₁ and f₂ be the frequency of wave 1 and wave 2.

And

Hence, the wave having less wavelength will have higher frequency. The wave having wavelength 3 x 10⁴ m will have higher frequency.
When the use of significant figures and rounding up is applied correctly the mass of the mixture will be 80.5 g.
In cases of addition or subtraction, only the last significant figure of every number is taken into account.
In 30.05, this is 5, in the hundredths. When we look at 50.0, the last significant figure is 0, and it is in the tenths. And in 0.4006, the last significant figure is 6, in the ten thousandths. Of these three, the 0 from 50.0 is in the leftmost position, which means that the last significant figure of the result needs to be in the same position (in the tenths).
Moving onto the actual algebraic operation:
30.05 g + 50.0 g + 0.4006 = 80.4506 g
As we established, the last significant figure should be in the tenths, and we will have to round up 4 to 5 (trailing numbers are greater than 0), which means that the resulting mass will be 80.5 g.
You can learn more about significant figures here:
brainly.com/question/14804345
#SPJ4