1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
8

Write METAL, NONMETAL, DIATOMIC MOLECULE ,METALLOID

Chemistry
1 answer:
deff fn [24]3 years ago
3 0
Alkali metal - Group 1 metal
Alkaline earth metal - Group 2 metal
Iron triad - metal
Halogens - most are diatomic and are nonmetals - Cl2, Br2, I2
Noble gases - nonmetals and are not reactive due to full valence shell.
Boron group - metalloid
Oxygen group - oxygen molecule - a diatomic molecule composed of oxygen atoms, which are nonmetals.
You might be interested in
The bonds in the compound MgSO4 can be described as
Butoxors [25]
C. Sulfur and oxygen (non metals) forms a covalent bond while the magnesium (a metal) will react with both non metals to form an ionic bond
7 0
4 years ago
200.0 mL of 3.85 M HCl is added to 100.0 mL of 4.6 M barium hydroxide. The reaction goes to completion. What is the concentratio
Ede4ka [16]

Answer:

2.387 mol/L

Explanation:

The reaction that takes place is:

  • 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O

First we <u>calculate how many moles of each reagent were added</u>:

  • HCl ⇒ 200.0 mL * 3.85 M = 203.85 mmol HCl
  • Ba(OH)₂ ⇒ 100.0 mL * 4.6 M = 460 mmol Ba(OH)₂

460 mmol of Ba(OH)₂ would react completely with (2*460) 920 mmol of HCl. There are not as many mmoles of HCl so Ba(OH)₂ will remain in excess.

Now we <u>calculate how many moles of Ba(OH)₂ reacted</u>, by c<em>onverting the total number of HCl moles to Ba(OH)₂ moles</em>:

  • 203.85 mmol HCl * \frac{1mmolBa(OH)_{2}}{2mmolHCl}= 101.925 mmol Ba(OH)₂

This means the remaining Ba(OH)₂ is:

  • 460 mmol - 101.925 mmol = 358.075 mmoles Ba(OH)₂

There are two OH⁻ moles per Ba(OH)₂ mol:

  • OH⁻ moles = 2 * 358.075 = 716.15 mmol OH⁻

Finally we <u>divide the number of OH⁻ moles by the </u><u><em>total</em></u><u> volume</u> (100 mL + 200 mL):

  • 716.15 mmol OH⁻ / 300.0 mL = 2.387 M

So the answer is 2.387 mol/L

7 0
3 years ago
Two solutions namely, 500 ml of 0.50 m hcl and 500 ml of 0.50 m naoh at the same temperature of 21.6 are mixed in a constant-pre
weeeeeb [17]

24.6 ℃

<h3>Explanation</h3>

Hydrochloric acid and sodium hydroxide reacts by the following equation:

\text{HCl} \; (aq) + \text{NaOH} \; (aq) \to \text{NaCl} \; (aq) + \text{H}_2\text{O} \; (aq)

which is equivalent to

\text{H}^{+} \; (aq) + \text{OH}^{-} \; (aq) \to \text{H}_2\text{O}\; (l)

The question states that the second equation has an enthalpy, or "heat", of neutralization of -56.2 \; \text{kJ}. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce 56.2 \; \text{kJ} or 56.2 \times 10^{3}\; \text{J} of energy.

500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release 0.25 \times 56.2 \times 10^{3} = 1.405 \times 10^{4} \; \text{J} of energy.

Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.

The question has given the heat capacity of the calorimeter directly.

The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.

The calorimeter contains 1.00 liters or 1.00 \times 10^{3} \; \text{ml} of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of 1.00 \times 10^{3} \; \text{g}.

The solution has a specific heat of 4.184 \; \text{J} \cdot \text{g}^{-1} \cdot \text{K}^{-1}. The solution thus have a heat capacity of 4.184 \times 1.00 \times 10^{3} = 4.184 \times 10^{3} \; \text{J} \cdot\text{K}^{-1}. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.

The calorimeter-solution system thus has a heat capacity of 4.634 \times 10^{3} \; \text{J} \cdot \text{K}^{-1}, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy. 1.405 \times 10^{4} \; \text{J} are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.

4 0
3 years ago
Which planet likely has flowing liquid metallic hydrogen as the source of its magnetic field?
uysha [10]
Your answer is Saturn.
8 0
3 years ago
Examples of food types that contain potential energy
Marrrta [24]

Answer:

Organic vitamens

Explanation:

3 0
3 years ago
Other questions:
  • 5. 54 J of heat is required to raise the temperature of a 2.47g unknown substance from 17.10C to 46.70C. a) Calculate the specif
    14·1 answer
  • What types of emergency situations could rescue workers be in that would make it difficult for them to get energy to their elect
    14·1 answer
  • How can You friend electrons, protons and neutrons in an element?
    6·1 answer
  • A 0.623 g sample of a monoprotic acid is dissolved in water and titrated with 0.260 M KOH.
    11·1 answer
  • An element consists of 5.85% of an isotope with mass 53.940 u, 91.75% of an isotope with mass 55.9349 u, 2.12% of an isotope wit
    7·1 answer
  • The specific heat of a certain type of cooking oil is 1.75 cal/ (g c) how much heat energy is needed to raise the temperature of
    13·1 answer
  • Describe why corrosion is a natural process
    12·1 answer
  • What type of energy does a ball have when it rolls down a hill?
    9·1 answer
  • What factors affect the speed of a wave? Check all that apply. the amplitude of the wave the energy of the wave the temperature
    8·1 answer
  • What is meant by atomic number?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!