Answer:
earth's shadow covering the moon,thats lunar eclipse
Answer:
c and d
Explanation:
obviously kksxsxksxkskxkskxksxksxsxsxsxsxsxsxs
<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
Put a fork under your pillow tonight, and your wish will come true tomorrow.
Color property of light would provide evidence for the idea that light is a wave
<h3><u>
Explanation:</u></h3>
The reality is that light manifests practices that are representative of both waves and particles. Young proposed that light of varying colors was formed of waves possessing various lengths, a basic theory that is popularly believed today. In contradiction, the particle theory advocates envisioned that several colors were obtained from particles holding either various masses or moving at various speeds.
All waves are perceived to experience refraction when they transpire from one means to another means. Light, similar to any wave, is apprehended to refract as it transfers from one medium into another medium.