The scale would need 10 aluminum cubes on one side. Figure out how many paper clips would be needed on the other side to balance this. You have to use more than one aluminum cube because you need to have enough cubes so that you get a whole number mass. 10 cubes gives you a total mass of 27 g for the aluminum.
Answer:
-10.8m/s^2
Explanation:
a=change in velocity/change in time
-27 m/s/2.5=10.8m/s^2
or if its not negative
27m/s/2.5=10.8m/s^2
This is what wiki says hope it helps
A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P.[1] It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point.
A displacement may be also described as a 'relative position': the final position of a point (Sf) relative to its initial position (Si), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors:
Answer:
Temperature increase = 2.1 [C]
Explanation:
We need to identify the initial data of the problem.
v = velocity of the copper sphere = 40 [m/s]
Cp = heat capacity = 387 [J/kg*C]
The most important data given is the fact that when the shock occurs kinetic energy is transformed into thermal energy, therefore it will have to be:
![E_{k}=Q\\ E_{k}= kinetic energy [J]\\Q=thermal energy [J]\\Re-employment values and equalizing equations\\\\\frac{1}{2} *m*v^{2}=m*C_{p}*dT \\The masses are canceled \\\\dT=\frac{v^{2}}{C_{p} *2} \\dT=2.1 [C]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DQ%5C%5C%20E_%7Bk%7D%3D%20kinetic%20energy%20%5BJ%5D%5C%5CQ%3Dthermal%20energy%20%5BJ%5D%5C%5CRe-employment%20values%20and%20equalizing%20equations%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2AC_%7Bp%7D%2AdT%20%20%5C%5CThe%20masses%20are%20canceled%20%5C%5C%5C%5CdT%3D%5Cfrac%7Bv%5E%7B2%7D%7D%7BC_%7Bp%7D%20%2A2%7D%20%5C%5CdT%3D2.1%20%5BC%5D)
Answer:
K = 0.076 J
Explanation:
The height of the target, h = 0.860 m
The mass of the steel ball, m = 0.0120 kg
Distance moved, d = 1.50 m
We need to find the kinetic energy (in joules) of the target ball just after it is struck. Let t is the time taken by the ball to reach the ground.

Put all the values,

The velocity of the ball is :

The kinetic energy of the ball is :

So, the required kinetic energy is 0.076 J.