–9.8 m/s<span>2
Just took it and got it right!</span>
Answer:
Friction always acts in the direction opposing motion. This means if friction is present, it counteracts and cancels some of the force causing the motion (if the object is being accelerated).
Explanation:
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other.
Answer:
Explanation:
I got everything but i. Don't know why but it's eluding me. So let's do everything but that.
a. PE = mgh so
PE = (2.5)(98)(14) and
PE = 340 J
b.
so
and
KE = 250 J
c. TE = KE + PE so
TE = 340 + 250 and
TE = 590 J
d. PE at 8.7 m:
PE = (2.5)(9.8)(8.7) and
PE = 210 J
e. The KE at the same height:
TE = KE + PE and
590 = KE + 210 so
KE = 380 J
f. The velocity at that height:
and
so
v = 17 m/s
g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:
590 = KE + PE and
PE = (2.5)(9.8)(11.6) so
PE = 280 then
590 = KE + 280 so
KE = 310 then
and
so
v = 16 m/s
h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:
and
26 = 0 + 9.8t and
26 = 9.8t so the time at 26 m/s is
t = 2.7 seconds. Now we use that in the equation for displacement:
Δx =
and filling in the time the object was at 26 m/s:
Δx = 0t +
so
Δx = 36 m
i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.
It doesn't matter. If the slides are truly frictionless, then
your kinetic energy at the bottom will be equal to the
potential energy you had at the top, no matter what kind
of route you took getting down.
___________________________
The only way I can think of that it would make a difference
would be if the shallow slide were REALLY REALLY long,
and you didn't have anything to eat all the way down.
Then you might lose some weight while you're on the slide,
and your mass might be less at the bottom than it was at the
top. Then, in order to have the same kinetic energy at the
bottom, you'd need to be going a little bit faster.
But if it takes less than, say, two or three days, to go down the
long, shallow slide, then this effect would probably be too small
to make any difference.
Answer:
9654.34 m
Explanation:
from conservation of momentum

And from Conservation of Energy
