Answer:
The metals in this group are lithium, sodium, potassium, rubidium, cesium, and francium. The gas hydrogen is also put in this group because it shares similar reactivity with the alkali metals.
I don't know if this is what you wanted or not sorry if it isn't
A. As wavelength increases, radiant energy and frequency increase.
Answer:
The answer is given below.
Explanation:
We will consider the acid as HA and will set up an ICE table with the equilibrium dissociation of α.
AT pH 2.4 the initial H+ concentration will be 3.98^10-3 M
HA → H+ + A-
Initial concentration: 0.1 → 3.98 ^10-3 + 0
equilibrium concentration: 0.1(1-α) → 3.98 * 10-3 + 0.1α 0.1α
pKa of chloroacetic acid is 2.9
-log(Ka) = 2.9
Ka = 1.26 * 10-3
From the equation, Ka = [H+] * [A-] / [HA]
1.26 * 10-3 = (3.98 * 10-3 + 0.1α )* 0.1α / 0.1(1-α)
Since α<<1, we assume 1-α = 1
Solving the equation, we have: α = 0.094
Since this is the fraction of acid that has dissociated, we can say that % of base form = 100 * α= 9.4%
Electron affinity is defined as the change in energy (in kJ/mole) of a neutral atom (in the gaseous phase) when an electron is added to the atom to form a negative ion. In other words, the neutral atom's likelihood of gaining an electron.
Electron Affinity of Lithium is 59.6 kJ/mol.
Electron Affinity of Caesium is 45.5 kJ/mol.
Electron Affinity of Lithium is 59.6 kJ/mol. Electronegativity of Lithium is 0.98. ... Electron affinities are more difficult to measure than ionization energies. An atom of Lithium in the gas phase, for example, gives off energy when it gains an electron to form an ion of Lithium.
Trends
The ionization energy of the elements within a period generally increases from left to right. This is due to valence shell stability.
The ionization energy of the elements within a group generally decreases from top to bottom. This is due to electron shielding.
The noble gases possess very high ionisation energies because of their full valence shells as indicated in the graph. Note that helium has the highest ionization energy of all the elements.