Answer:
False.
Explanation:
Snow forms when tiny ice crystals in clouds stick together to make snowflakes.
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>
Stoichiomety:
1 moles of C + 1 mol of O2 = 1 mol of CO2
multiply each # of moles times the atomic molar mass of the compund to find the relation is weights
Atomic or molar weights:
C: 12 g/mol
O2: 2 * 16 g/mol = 32 g/mol
CO2 = 12 g/mol + 2* 16 g/mol = 44 g/mol
Stoichiometry:
12 g of C react with 32 g of O2 to produce 44 g of CO2
Then 18 g of C will react with: 18 * 32/ 12 g of Oxygen = 48 g of Oxygen
And the result will be 12 g of C + 48 g of O2 = 60 g of CO2.
You cannot obtain 72 g of CO2 from 18 g of C.
May be they just pretended that you use the law of consrvation of mass and say that you need 72 g - 18g = 54 g. But it violates the proportion of C and O2 in the CO2 and is not possible.
Answer: Option (4) is the correct answer.
Explanation:
It is known that density is mass divided by volume.
Mathematically, Density = 
Since, density is directly proportional to mass. So, more is the mass of an element more will be its density.
Mass of magnesium is 24.305 g/mol.
Mass of barium is 137.327 g/mol.
Mass of beryllium is 9.012 g/mol
Mass of radium is 226 g/mol.
Hence, radium has more mass therefore it will have the greatest density at STP.
(a) We know that work is the product of Force and Distance so: (in this
case Distance is negative since going down so –d)
work = force * distance
work = M * (g - g/4) * -d
work = -3Mgd/4 <span>
(b) The work by the weight of the block is simply:</span>
work = Mgd <span>
(c) The kinetic energy is simply equivalent to the
net work, therefore:</span>
KE = net work
KE = Mgd/4 <span>
(d) The velocity is:</span>
v = √(2*KE/M)
Plugging in the value of KE from c:
v = √(2*Mgd / 4M)
<span>v = √(gd / 2) </span>