1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
4 years ago
15

Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu

rs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. For air as an ideal gas with Cp = 1.1 Kj/kg * K, determine
(a) the rate power is developed, in kJ per kg of air flowing, and
(b) the rate of entropy production within the turbine, in kJ/kg per kg of air flowing.
Engineering
1 answer:
Sonja [21]4 years ago
5 0

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

You might be interested in
Consider tests of an unswept wing that spans the wind tunnel and whose airfoil section is NACA 23012. Since the wing model spans
Dominik [7]

Answer:

Check the explanation

Explanation:

to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°

as well as the corresponding section lift coefficient and die moment coefficient .

Kindly check the attached image below to see the step by step explanation to the above question.

3 0
3 years ago
) A certain polymer is used for evacuation systems for aircraft. It is important that the polymer be resistant to the aging proc
bonufazy [111]

Answer:

it will be a scattered plot

Explanation:

5 0
2 years ago
An AX ceramic compound has the rock salt crystal structure. If the radii of the A and X ions are 0.137 and 0.241 nm, respectivel
Tju [1.3M]

Answer:

c) 1.75 g/cm³

Explanation:

Given that

Radii of the A ion, r(c) = 0.137 nm

Radii of the X ion, r(a) = 0.241 nm

Atomic weight of the A ion, A(c) = 22.7 g/mol

Atomic weight of the X ion, A(a) = 91.4 g/mol

Avogadro's number, N = 6.02*10^23 per mol

Solution is attached below

3 0
3 years ago
In a creep test, increasing the temperature will (choose the best answer) A. increase the instantaneous initial deformation B. i
Hitman42 [59]

Answer:

All of the above

Explanation:

firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.

Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens.  As temperature is raised the recrystallization gets to be more.

8 0
3 years ago
Implement the following Matlab code:
vagabundo [1.1K]
28384 *x soít cos estematema
3 0
3 years ago
Other questions:
  • A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.
    12·1 answer
  • What are the seven problem solving steps?
    12·1 answer
  • If the efficiency of the boiler is 91.2 % , the overall efficiency of the turbine, which includes the Carnot efficiency and its
    5·1 answer
  • What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment given: 24 °C = the surface temp
    10·1 answer
  • What is the base unit in standard measurement
    13·2 answers
  • A fair die is thrown, What is the probability gained if you are told that 4 will
    12·1 answer
  • The W16x50, steel beam below has a span of 26' and is subjected to a 2.3 k/ft uniform distributed loading. If a 8 kip load is al
    8·1 answer
  • Somebody help me!! It’s due today
    9·1 answer
  • What is the role of engineers in nation building <br><br>​
    13·2 answers
  • The project's criteria.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!