Answer:
25.06s
Explanation:
Remaining part of the question.
(A large stone sphere has a mass of 8200 kg and a radius of 90 cm and floats with nearly zero friction on a thin layer of pressurized water.)
Solution:
F = 60N
r = 90cm = 0.9m
M = 8200kg
Moment of inertia for a sphere (I) = ⅖mr²
I = ⅖ * m * r²
I = ⅖ * 8200 * (0.9)²
I = 0.4 * 8200 * 0.81
I = 2656.8 kgm²
Torque (T) = Iα
but T = Fr
Equating both equations,
Iα = Fr
α = Fr / I
α = (60 * 0.9) / 2656.8
α = 0.020rad/s²
The time it will take her to rotate the sphere,
Θ = w₀t + ½αt²
Angular displacement for one revolution is 2Π rads..
θ = 2π rads
2π = 0 + ½ * 0.02 * t²
(w₀ is equal to zero since sphere is at rest)
2π = ½ * 0.02 * t²
6.284 = 0.01 t²
t² =6.284 / 0.01
t² = 628.4
t = √(628.4)
t = 25.06s
<span>These are isotopes of carbon and they all contain 6 protons and 6 electrons but each contains a difference number of neutrons - 6, 7, and 8 respectively.
^ This is the answer because an isotope changes the atomic mass, NOT atomic number. That means that the neutrons are changed, not the protons. </span>
Power = (voltage) x (current) =
(120 V) x (8 A) = <em>960 watts</em>
Answer:
the total kinetic and potential energy of the ball is constant (mechanical energy remains the same)
Explanation:
As the ball falls, kinetic energy is increased in direct relation with the decrease in potential energy
ΔKE + ΔPE = 0