Answer:
Watt
Explanation:
Power is measured in Watts. J/s is the base unit of measurement, but we usually measure power in Watts (W).
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m
50/200×100%=25% is answer the formula is usefull energy output divided by total energy provided into 100%
<span>They are used to measure and map effluent and pollution discharges from factories and sewerage plants, and the movement of sand around harbours, rivers and bays. Radioactive materials used for such purposes have short half-lives and decay to background levels within days.</span>
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.