Answer:
The amount of each gas that can dissolve in the ocean depends on the solubility and saturation of the gas in water. Solubility refers to the amount of a dissolved gas that the water can hold under a particular set of conditions, which are usually defined as 0o C and 1 atmosphere of pressure.
Explanation:
hope this helps
Answer:
the value of force, F=4.0N
Explanation:
Firstly, recall velocity-time equation
- v=u+at
- (4)=(2)+a(5)
- a=0.4m/s²
Secondly, recall the Newton's 2nd Law
- <em>F</em><em>=</em><em>ma</em>
- <em>F</em><em>=</em><em>(</em><em>1</em><em>0</em><em>)</em><em>(</em><em>0</em><em>.</em><em>4</em><em>)</em>
- <em>F</em><em>=</em><em>4</em><em>.</em><em>0</em><em>N</em>
The answer to this question is false
The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Answer
A thin atmosphere does not supply much oxygen, and the heat from the sun would evaporate it, because mercury is close to the sun.