1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
13

Transmission cleaners are used: A) Only in conjunction with fuel system cleanersB) Only in the colder monthsC) By themselvesD) I

n conjunction with a transmission fluid exchange
Engineering
2 answers:
valentina_108 [34]3 years ago
5 0

Answer: D

Explanation: When you change your transmission fluid you change your filter. When you do that you clean where the filter was. Then you can put the new filter on and the new fluid.

irinina [24]3 years ago
3 0

Explanation: When you change your transmission fluid you change your filter. When you do that you clean where the filter was. Then you can put the new filter on and the new fluid.

is correct

You might be interested in
One employee was climbing a metal ladder to hand an electric drill to the journeyman installer on a scaffold about five feet abo
lbvjy [14]

Answer:

ACCIDENT PREVENTION RECOMMENDATIONS  

Fatal Fact made us to understand some of the prevention techniques as stated below.

1. Use approved ground fault circuit interrupters or an assured equipment grounding conductor program to protect employees on construction sites.  

2. Use equipment that provides a permanent and continuous path from circuits, equipment, structures, conduit or enclosures to ground.

3. Inspect electrical tools and equipment daily and remove damaged or defective equipment from use until it is repaired.

Explanation:

In order to gain a better understanding of the answer above let explain some terms

Ground Fault Circuit Interrupters :

    A ground fault circuit interrupter (GFCI), or Residual Current Device (RCD) is a type of circuit breaker which shuts off electric power when it senses an imbalance between the outgoing and incoming current. The main purpose is to protect people from an electric shock caused when some of the current travels through a person's body due to an electrical fault such as a short circuit, insulation failure, or equipment malfunction.

So the first statement is implying that in order to prevent this accident that  this device (GFCI) should have  been used in that  construction site, or as  an alternative before the  construction commenced  the company should have drafted a lay down conductor program(i.e. a step by step conductor program) that assured equipment grounding  in order to protect employees on construction sites

5 0
3 years ago
Using the following data, determine the percentage retained, cumulative percentage retained, and percent passing for each sieve.
vekshin1

Solution :

<u>Sieve Size</u> (in)                   <u>Weight retain</u><u>(g)</u>

3                                         1.62

2                                         2.17

$1\frac{1}{2}$                                       3.62

$\frac{3}{4}$                                        2.27

$\frac{3}{8}$                                        1.38

PAN                                    0.21

Given :

Sieve       weight       % wt. retain    % cumulative       % finer

size        retained                               wt. retain

No. 4        59.5            10.225%          10.225%            89.775%

No. 8        86.5            14.865%          25.090%           74.91%

No. 16       138              23.7154%        48.8054%         51.2%

No. 30      127.8           21.91%              70.7154%          29.2850%

No. 50      97               16.6695%         87.3849%         12.62%

No. 100     66.8            11.4796%         98.92%              1.08%

Pan          <u>  6.3    </u>           1.08%              100%                   0%

                581.9 gram

Effective size = percentage finer 10% ($$D_{20})

0.149 mm, N 100, % finer 1.08

0.297, N 50 , % finer 12.62%

x  ,   10%

$y-1.08 = \frac{12.62 - 1.08}{0.297 - 0.149}(x-0.149)$

$(10-1.08) \times \frac{0.297 - 0.149}{12.62 - 1.08}+ 0.149=x$

x = 0.2634 mm

Effective size, $D_{10} = 0.2643 \ mm$

Now, N 16 (1.19 mm)  ,  51.2%

N 8 (2.38 mm)  ,  74.91%

x,  60%

$60-51.2 = \frac{74.91-51.2}{2.38-1.19}(x-1.19)$

x = 1.6317 mm

$\therefore D_{60} = 1.6317 \ mm$

Uniformity co-efficient = $\frac{D_{60}}{D_{10}}$

   $Cu= \frac{1.6317}{0.2643}$

Cu = 6.17

Now, fineness modulus = $\frac{\Sigma \text{\ cumulative retain on all sieve }}{100}$

$=\frac{\Sigma (10.225+25.09+48.8054+70.7165+87.39+98.92+100)}{100}$

= 4.41

which lies between No. 4  and No. 5 sieve [4.76 to 4.00]

So, fineness modulus = 4.38 mm

7 0
3 years ago
Homes may be heated by pumping hot water through radiators. What mass of water (in g) will provide the same amount of heat when
Nitella [24]

Answer:

a mass of water required is mw= 1273.26 gr = 1.27376 Kg

Explanation:

Assuming that the steam also gives out latent heat, the heat provided should be same for cooling the hot water than cooling the steam and condense it completely:

Q = mw * cw * ΔTw = ms * cs * ΔTw + ms * L

where m = mass , c= specific heat , ΔT=temperature change, L = latent heat of condensation

therefore

mw = ( ms * cs * ΔTw + ms * L )/ (cw * ΔTw )

replacing values

mw = [182g * 2.078 J/g°C*(118°C-100°C) + 118 g * 2260 J/g ] /[4.187 J/g°C * (90.7°C-39.4°C)] = 1273.26 gr = 1.27376 Kg

3 0
3 years ago
The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
Natasha2012 [34]

This question is not complete, the complete question is;

The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005

Answer:

the length of the pipe is 11583 in or 965.25 ft

Explanation:

Given the data in the question;

Static pressure ratio; p1/p2 = 10

friction coefficient f = 0.005

diameter of pipe, D =4 inch

first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so

4fL_{max} / D = 57.915

we substitute

(4×0.005×L_{max}) / 4  = 57.915

0.005L_{max} = 57.915

L_{max} = 57.915 / 0.005

L_{max}  = 11583 in

Therefore, the length of the pipe is 11583 in or 965.25 ft

6 0
3 years ago
The following is a list of metals and alloys:
viktelen [127]

Answer:

A) Gray cast iron

B) Aluminum

C) Titanium alloy

D) Tool steel

E) Titanium alloy

F) magnesium

G) Tungsten

5 0
3 years ago
Other questions:
  • Who does the narrator blame for the loss of her job as editor-in-chief? <br> see if i care readworks
    8·2 answers
  • How an AK 47 gun was works​
    14·1 answer
  • what should be used to feed material into a machine? A.joy stick B.push stick C. your feet D. your hands​
    14·1 answer
  • A diesel engine with an engine volume of 4.0 L and an engine speed of 2500 rpm operates on an air–fuel ratio of 18 kg air/kg fue
    6·2 answers
  • Write a statement that increases numPeople by 5. Ex: If numPeople is initially 10, the output is: There are 15 people.
    11·1 answer
  • List two common units of measurement to describe height
    5·2 answers
  • The driver _______
    9·2 answers
  • What are example for mantle
    5·1 answer
  • What is the function of engineering
    6·1 answer
  • Diffrerentiate y=cos^{4} (3x+1)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!