(a) The velocity ratio of the screw is 1570.8.
(b) The mechanical advantage of the screw is 785.39.
<h3>
Velocity ratio of the screw</h3>
The velocity ratio of the screw is calculated as follows;
V.R = 2πr/P
where;
- P is the pitch = 1/10 cm = 0.1 cm = 0.001 m
- r is radius = 25 cm = 0.25 m
V.R = (2π x 0.25)/(0.001)
V.R = 1570.8
<h3>Mechanical advantage of the screw</h3>
E = MA/VR x 100%
0.5 = MA/1570.8
MA = 785.39
Learn more about mechanical advantage here: brainly.com/question/18345299
#SPJ1
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
The answer is C) A girl hangs by both hands, motionless, from a trapeze.
Answer:
An example of kinetic energy is a <u><em>car coming to a stop</em></u>
Explanation:
Kinetic energy is the energy that a body or system possesses due to its movement. In physics this energy is defined as the amount of work necessary to accelerate a body of a certain mass and in rest position, until reaching a certain speed. This energy obtained will remain unchanged as long as this body does not vary its speed. That is, kinetic energy measures how many changes an object that is moving can cause.
<u><em>An example of kinetic energy is a car coming to a stop</em></u>. If the car is moving and comes to a stop, there is a change in speed, therefore in movement, eventually producing a change in kinetic energy. This energy depends on the mass of the body, in this case the car, and the speed. As the speed decreases, the kinetic energy will decrease.