The two possible angles obtained by using the qudratic equation are;
θ
= 15.10° and θ2 = 73.51°
Given, speed of water =
= 50ft/s
For the motion along x direction, time period can be calculated as follows:

35 = (50 × cosθ) t
t = 0.64 / cosθ
For the motion in y direction, an equation can be obtained as follows:


θ) 
Plugging in the values we get:

θ) 
-20 = -32tanθ - 10.304
θ
Upon solving the above quadratic equation, we get,
tanθ = 0.27 , -3.38
Therefore,
tanθ
= 0.27
θ
= 15.10°
and, tanθ
= -3.38
θ
= 73.51
Learn more about quadratic equation here:
brainly.com/question/17177510
#SPJ4
Answer:

Explanation:
d = Distance traveled = 40.8 km
s = Speed of jet = 340 m/s
Time is given by




The time taken to complete the journey is
.
Answer:
a= 17.69 m/s^2
Explanation:
Step one:
given data
A car accelerates uniformly from rest to 23 m/s
u= 0m/s
v= 23m/s
distance= 30m
Step two:
We know that
acceleration= velocity/time
also,
velocity= distance/time
23= 30/t
t= 30/23
t= 1.30 seconds
hence
acceleration= 23/1.30
accelaration= 17.69 m/s^2
Complete question:
A train has an initial velocity of 44m/s and an acceleration of -4m/s². calculate its velocity after 10s ?
Answer:
the final velocity of the train is 4 m/s.
Explanation:
Given;
initial velocity of the train, u = 44 m/s
acceleration of the train, a = -4m/s² (the negative sign shows that the train is decelerating)
time of motion, t = 10 s
let the final velocity of the train = v
The final velocity of the train is calculated using the following kinematic equation;
v = u + at
v = 44 + (-4 x 10)
v = 44 - 40
v = 4 m/s
Therefore, the final velocity of the train is 4 m/s.