Answer:Ultraviolet radiation has shorter wavelengths and higher energy than infrared radiation.
Explanation: Electromagnetic radiation radiations which have both electrical and magnetic properties,they can be transmitted through space or through a medium.
It includes Gamma radiation, infra-red, visible light, Ultraviolet radiation etc they occur with different wavelength, the lower the wavelength the higher the Energy dissipated per photon. According to their order of decreasing wavelength and increased energy they are classified as follows.
RADIO WAVE, MICRO WAVE, INFRA-RED, VISIBLE LIGHT, ULTRAVIOLET RAY, X-RAY, GAMMA RAYS.
Answer:
Decreases the transparency of the atmosphere to infrared light.
Explanation:
When a large amount of green-house gases are present in the atmosphere, the layer of these gases become opaque to infrared radiation and radiation from the sun get trapped into these gases molecules. These excited molecules radiate this energy into our own atmosphere and that why the temperature of Earth is rising due to the Green-House effect.
Answer:
500cal
Explanation:
Given parameters:
Mass of water = 50g
Initial temperature = 22°C
Final temperature = 32°C
Specific heat of water = 1cal/g
Unknown:
Amount of heat absorbed by the water in calories = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the amount of heat absorbed
m is the mass
c is the specific heat capacity
Ф is the temperature change
H = 50 x 1 x (32 - 22) = 500cal
Answer:
The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation:
Explanation:
Given:
v₀ = 0 m/s
a = 9.8 m/s²
t = 4.7 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (4.7 s) + ½ (9.8 m/s²) (4.7 s)²
Δy ≈ 110 m