<h2>
Answer: 8.93 g/cm³</h2>
<h3>
Explanation:</h3>
Density = mass ÷ volume
= 217.0 g ÷ 24.3 cm³
= 8.93 g/cm³
<h3>∴ the unknown sample of mass 217.0 grams and volume of 24.3 cm³ has a density of 8.93 g/cm³.
</h3>
Answer:
19.264×
atoms are present in 3.2 moles of carbon.
Explanation:
It is known that one mole of each element is composed of Avagadro's number of atoms. This is same for all the elements in the periodic table.
So, as 1 mole of any element = Avagadro's number of atoms = 6.02×
atoms
It is as simple as understanding a dozen of anything is equal to 12 pieces of that object.
As here the moles of carbon is given as 3.20 moles, the number of atoms in this mole can be determined as below.
1 mole of carbon = 6.02 ×
atoms
Then, 3.20 moles of carbon = 3.20 × 6.02 ×
atoms
Thus, 19.264×
atoms are present in 3.2 moles of carbon.
Answer:
built a special cavity where the electromagnetic quantum states resonate with the natural vibrations of the atoms. In doing so, one cancouple a photon-based oscillator to a mechanical oscillator, controlling the mechanical quantum states with visible light. The result is a prototype of a quantum transducer, a device that converts light energy into mechanical energy (sound energy)
Explanation:
Sound energy is created by vibrating particles of medium that propagates as a wave. So in order to convert light (electromagnetic wave) to sound wave it has to be converted into electric or magnetic signals. Then these signals can be converted into sound waves.
However, if you consider the particle nature of light. It contains momentum and after collision sets the other particles into oscillatory motion but the wavelength of these vibrations is too high to be considered as sound waves.