Answer:
0.0277 M.
Explanation:
The integral rate law of a first order reaction:
<em>Kt = ln ([A₀]/[A]),</em>
where, k is the rate constant of the reaction <em>(k = 3.36 × 10⁻⁵ s⁻¹)</em>,
t is the time of the reaction <em>(t = 235.0 min = 14100 s)</em>,
[A₀] is the initial concentration of cyclopropane <em>([A₀] = 0.0445 M)</em>
<em>∵ Kt = ln ([A₀]/[A]),</em>
∴ (3.36 × 10⁻⁵ s⁻¹)(14100 s) = ln (0.0445 M)/[A]
Taking the exponential of both sides:
1.6 = (0.0445 M)/[A]
<em>∴ [A] = (0.0445 M)/1.6 = 0.0277 M.</em>
<em />
Answer:
Gas X
Explanation:
The given reaction can be written in the form of chemical equation as shown below as:

According to law of conservation of mass, the moles of each substance in the reaction must be equal on both reactant and product side.
Also, the question asks for the gas which is diatomic.
cannot be diatomic as the formula contains 3 atoms.
Between gas X and gas Y , <u>X has to be diatomic for the reaction to balance </u>as:

This question provides us –
- Weight of
is = 47 g - Volume, V = 375 mL
__________________________________________
- Molar Mass of
–


<u>Using formula</u> –






- Henceforth, Molarity of the solution is = 1.7M
___________________________________________
Covalent bonds form when electrons are shared between two nonmetals.
Answer:It’s C on edge 2020
(Combustion of car engines producing pollutants in the air)
Explanation:
I got it right :))