Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
In cell biology, the cytoplasm is the material or protoplasm within a living cell, excluding the cell nucleus. It comprises cytosol (the gel-like substance enclosed within the cell membrane) and the organelles – the cell's internal sub-structures. All of the contents of the cells of prokaryote organisms (such as bacteria, which lack a cell nucleus) are contained within the cytoplasm. Within the cells of eukaryote organisms the contents of the cell nucleus are separated from the cytoplasm, and are then called thenucleoplasm. The cytoplasm is about 80% water and usually colorless.[1]
It is within the cytoplasm that most cellular activities occur, such as many metabolic pathways including glycolysis, and processes such as cell division. The concentrated inner area is called the endoplasm and the outer layer is called the cell cortex or theectoplasm.
Movement of calcium ions in and out of the cytoplasm is a signaling activity for metabolic processes.[2]
In plants, movement of the cytoplasm around vacuoles is known as cytoplasmic streaming.
We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.
Take a look at their electronegativity values for this one. Electronegativity is the relative attraction that a atom in a molecule has for the shared pair of electrons in a covalent bond<span>. Salt is Sodium Chloride which is NaCl. Na has an electronegativity value of 0.93. Cl has an electronegativity value of 3.16. The difference between the two is 2.23. This is much higher than 1.7 (a pure covalent bond e.g. Oxygen-Oxygen bond O2) therefore it is a highly ionic compound. If this was less than 1.7 it would be a polar covalent molecule. </span>