Explanation: We are given three balloon carrying different charges: One having positive charge, one having negative charge and one having no charge.
When we bring positive rod near these three balloons, all of them behave differently.
According to the Coulomb's Law:
Like charges repel each other and unlike charges attract each other.
- When we bring positive rod towards the balloon having positive charge, the balloon will move away from the rod, because like charges repel each other.
- When we bring positive rod near negative balloon, the balloon will be attracted to the rod because unlike charges attract each other.
- But, when we bring positive rod towards the balloon having no charge, the charges will be induced in the balloon. Although the balloon is neutral in nature but it will still carry some +ve or -ve charges. So, when the positive rod is bought near neutral ball, the negative side of the balloon will get attracted towards the rod and positive side will be repelled. From this, we say that the rod has induced some charges in the balloon.
Answer;
-Prohibited from use by OSHA
Explanation;
-Carbon tetrachloride is a clear and colorless liquid with an odor similar to that of chloroform.It is employed as a chemical reagent for a number of purposes, as a raw material in chemical manufacture and is, used very widely as a reagent to extinguish fires.
-It volatizes very easily, is a non-conductor of electricity and, as noted above, freezes at very low temperatures.
-It is effective, due to the blanketing effect of its vaporized fumes, on many Class B or volatile, flammable liquid fires and because it will mix with certain volatile, flammable liquids and form a non-burning combination.
Au^2S^3+ 3H^2 = 2Au + 3H^2S
The given question is incomplete. The complete question is:
How much heat is produced when 24.8 g of
is burned in excess oxygen gas
Given:
ΔH= −802 kJ.
Answer: 1243.1 kJ
Explanation:
Heat of combustion is the amount of heat released on complete combustion of 1 mole of substance.
Given :
Amount of heat released on combustion of 1 mole of methane = 802 kJ kJ/mol
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
1 mole of
weighs = 16 g
Thus we can say:
16 g of
on combustion releases heat = 802 kJ
Thus 24.8 g of
on combustion releases =
Thus heat released when 24.8 g of methane is burned in excess oxygen gas is 1243.1 kJ