Answer: The correct option is (c). The total pressure doubles.
Solution:
Initially, only 4 moles of oxygen gas were present in the flask.
(
) ( according to Dalton's law of partial pressure)
....(1)
= Total pressure when only oxygen gas was present.
Final total pressure when 4 moles of helium gas were added:

partial pressure of oxygen in the mixture :
Since, the number of moles of oxygen remains the same, the partial pressure of oxygen will also remain the same in the mixture.

= Total pressure of the mixture.
from (1)

On rearranging, we get:

The new total pressure will be twice of initial total pressure.
A bowling ball.
definition of dense-closely compacted in substance
Answer:
162 g Fe₂O₃
Explanation:
To find the mass of Fe₂O₃, you need to (1) convert grams C to moles C (via molar mass from periodic table), then (2) convert moles C to moles Fe₂O₃ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe₂O₃ to grams (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (C): 12.011 g/mol
2 Fe₂O₃(s) + 3 C(s) ---> 4 Fe(s) + 3 CO₂(g)
Molar Mass (Fe₂O₃): 2(55.845 g/mol) + 3(15.998 g/mol)
Molar Mass (Fe₂O₃): 159.684 g/mol
18.3 g C 1 mole 2 moles Fe₂O₃ 159.684 g
-------------- x ---------------- x ------------------------- x ----------------- = 162 g Fe₂O₃
12.011 g 3 moles C 1 mole