Answer:
230.4 s
Explanation:
The speed of car A is
and the distance travelled is
so the time taken for car A is
The speed of car B is
and the distance travelled is
so the time taken for car B is
So the difference in time is
Which corresponds to
so car B arrived 230.4 s before car A.
The tension in the cable is 23.2 N
<h3>What is the tension in the string?</h3>
The tension in the cable can be resolved into horizontal and vertical forces Tcosθ and Tsinθ respectively.
Tcosθ, is acting perpendicularly, Tcosθ = 0
Taking moments about the pivot:
Tsinθ * 2.2 = 4 * 9.8 * 0.7
Solving for θ;
θ = tan⁻¹(1.4/2.2) = 32.5°
T = 27.44/(sin 32.5 * 2.2)
T = 23.2 N
In conclusion, the tension in the cable is determined by taking moments about the pivot.
Learn more about moments of forces at: brainly.com/question/23826701
#SPJ1
Star 1 - 4 hours right ascension
Star 2 - 3 hours right ascension
Subtracting hours right ascension
4 hours right ascension - 3 hours right ascension = 1 hours right ascension.
Thus,
star 1 will rise 1 hour before star 2
Answer:
The answers to your questions are given below
Explanation:
22. The energy of an electromagnetic wave and it's frequency are related by the following equation:
E = hf
Where:
E => is the energy
h => is the Planck's constant
f => is the frequency
From the equation i.e E = hf, we can conclude that the energy of a wave is directly proportional to it's frequency. This implies that an increase in the frequency of the wave will lead to an increase in the energy of the wave and also, a decrease in the frequency will lead to a decrease in the energy of the wave.
23. Gamma ray and radio wave are both electromagnetic waves. All electromagnetic waves has a constant speed of 3×10⁸ m/s in space.
Thus, gamma ray and radio wave have the same speed in space.