Answer:
a) The speed of the slider is 4.28 in/s
b) The velocity vector is 2.33 in/s
Explanation:
a) According to the diagram 1 in the attached image:

Also:
![v_{C} =v_{A}+w_{AC}*r_{C/A}\\v_{Ci}=-3j+\left[\begin{array}{ccc}i&j&k\\0&0&w_{AC} \\6.883&-9.829&0\end{array}\right]\\v_{Ci}=-3j+(0+9.829w_{AC} i-(0-6.883w_{AC})j\\v_{Ci}=9.829w_{AC}i+(-3+6.883w_{AC})j](https://tex.z-dn.net/?f=v_%7BC%7D%20%3Dv_%7BA%7D%2Bw_%7BAC%7D%2Ar_%7BC%2FA%7D%5C%5Cv_%7BCi%7D%3D-3j%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C0%260%26w_%7BAC%7D%20%5C%5C6.883%26-9.829%260%5Cend%7Barray%7D%5Cright%5D%5C%5Cv_%7BCi%7D%3D-3j%2B%280%2B9.829w_%7BAC%7D%20i-%280-6.883w_%7BAC%7D%29j%5C%5Cv_%7BCi%7D%3D9.829w_%7BAC%7Di%2B%28-3%2B6.883w_%7BAC%7D%29j)
If we comparing both sides of the expression:


b) According to the diagram 2 in the attached image:

![v_{C}=v_{A}+w_{AC}r_{C/A}\\v_{C}=-3j+\left[\begin{array}{ccc}i&j&k\\0&0&w_{AC}\\7.713&-9.192&0\end{array}\right] \\v_{Ci}=-3j+(9.192w_{AC})i+7.713w_{AC}j\\v_{Ci}=9.192w_{AC}i+(7.713w_{AC}-3)j](https://tex.z-dn.net/?f=v_%7BC%7D%3Dv_%7BA%7D%2Bw_%7BAC%7Dr_%7BC%2FA%7D%5C%5Cv_%7BC%7D%3D-3j%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C0%260%26w_%7BAC%7D%5C%5C7.713%26-9.192%260%5Cend%7Barray%7D%5Cright%5D%20%5C%5Cv_%7BCi%7D%3D-3j%2B%289.192w_%7BAC%7D%29i%2B7.713w_%7BAC%7Dj%5C%5Cv_%7BCi%7D%3D9.192w_%7BAC%7Di%2B%287.713w_%7BAC%7D-3%29j)
Comparing both sides of the expression:

![v_{B}=v_{C}+w_{AC}r_{B/C}\\v_{B}=3.57i+\left[\begin{array}{ccc}i&j&k\\0&0&0.388\\-3.856&4.59&0\end{array}\right] \\v_{B}=3.57i+(0-1.78)i-(0+1.499)j\\v_{B}=1.787i-1.499j\\|v_{B}|=\sqrt{1.787^{2}+1.499^{2} } =2.33in/s](https://tex.z-dn.net/?f=v_%7BB%7D%3Dv_%7BC%7D%2Bw_%7BAC%7Dr_%7BB%2FC%7D%5C%5Cv_%7BB%7D%3D3.57i%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C0%260%260.388%5C%5C-3.856%264.59%260%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5Cv_%7BB%7D%3D3.57i%2B%280-1.78%29i-%280%2B1.499%29j%5C%5Cv_%7BB%7D%3D1.787i-1.499j%5C%5C%7Cv_%7BB%7D%7C%3D%5Csqrt%7B1.787%5E%7B2%7D%2B1.499%5E%7B2%7D%20%20%7D%20%3D2.33in%2Fs)
Explanation:

power = Force × distance /time
power = 944N × 12.4m/36secs
power = (944×12.4/36)Nms—¹
power = 390.2Nms—¹ or 390.2Watts or 390.2Js—¹
Answer:
when the body is resting N = 246.96 N
when the body is resting on a tilted surface N = 212.12 N.
when the body is in a elevator N = 317.036 N
Explanation:
when the block is resting on a stationary surface the normal force is balanced by the weight of the body.
weight of the body = mg = 25.2×9.8 = 246.96 N
therefore normal force = 246.98 N.
when the block is resting on a tilted surface the normal force will be balanced by the
component of the weight where Ф is the angle of inclination.
therefore N = mg
N= 212.12 N.
when the block is resting on a elevator that is accelerated upward the normal force will be the sum of weight and force due to acceleration ma
therefore N = 246.98 + 25.2×2.78
N = 317.036 N
Answer:
No, it is not magnetized.
Explanation:
Bar B does not necessarily have to be magnetized before it can be attracted to a magnet. It just has to be a magnetic material such as Iron.
If bar B were magnetized, it could either be attracted or repelled by the magnet since this would depend on the side of the pole of bar B facing it.
Since we are not given any information about bar B other than it is attracted to the magnet, it is thus not magnetized.