Answer:
20 ms¯¹
Explanation:
3. Determination of the final velocity
From the question given above, the following data were obtained:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
Acceleration is simply defined as the change in velocity per unit time.
Mathematically, it can be expressed as:
Acceleration (a) = final velocity – Initial velocity / time
a = v – u / t
With the above formula, we can obtain the final velocity of the car as follow:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
a = v – u / t
5 = v – 0 / 4
5 = v / 4
Cross multiply
v = 5 × 4
v = 20 ms¯¹
Thus, the final velocity of the car is 20 ms¯¹
Yes, it is diffusion !
Diffusion is the process in which gas, through random movement of particles, tends to fill up the whole volume of the container in which it is placed. So a similar process would lead the smoke, which is in form of gas (or light particles), to fill in the whole room in which it is contained.
Answer:
speed of white ball is 1.13 m/s and speed of black ball is 2.78 m/s
initial kinetic energy = final kinetic energy

Explanation:
Since there is no external force on the system of two balls so here total momentum of two balls initially must be equal to the total momentum of two balls after collision
So we will have
momentum conservation along x direction

now plug in all values in it

so we have

similarly in Y direction we have

now plug in all values in it

so we have


now from 1st equation we have



so speed of white ball is 1.13 m/s and speed of black ball is 2.78 m/s
Also we know that since this is an elastic collision so here kinetic energy is always conserved to
initial kinetic energy = final kinetic energy


Remember what acceleration is? It's how fast the speed is changing over a period of time.

So in dt = 2 secs, she sped up from 6 to 10 m/s and so dv = (10-6) m/s.
Now that you know dv and dt, you can calculate the acceleration a!