We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:
Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.
(1/2)*m*v²=m*g*h, masses cancel out and we get:
(1/2)*v²=g*h, and we multiply by 2 both sides of the equation
v²=2*g*h, and we take the square root to get v:
v=√(2*g*h)
v=99.04 m/s
So the package is moving with the speed of v= 99.04 m/s when it hits the ground.
Answer:
the average force exerted on the ball by the bat is 11,613.27 N
Explanation:
Given;
mass of the baseball, m = 151 g = 0.151 kg
initial velocity of the baseball, u = 39.5 m/s
final velocity of the baseball, v = 45.1 m/s
time of action, t = 1.10 ms = 1.10 x 10⁻³ s
The average force exerted on the ball by the bat is calculate as;
Therefore, the average force exerted on the ball by the bat is 11,613.27 N
Answer: 58.8235 km/h
speed = distance/time
the distance is 10 km
the time is 10 minutes
the unit is not correct, so we first change minute to hour
so 10/60 is 0.166667, rounded to 0.17.
10 km/ 0.17 hours =
Answer:
The energy is 
(a) is correct option
Explanation:
Given that,
Energy = 4480 j
Weight of nitrogen = 20 g
Boil temperature = 77 K
Pressure = 1 atm
We need to calculate the internal energy
Using first law of thermodynamics


Put the value into the formula



We need to calculate the number of molecules in 20 g N₂
Using formula of number of molecules

Put the value into the formula


We need to calculate the energy
Using formula of energy

Put the value into the formula


Hence, The energy is 