Answer:
Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Hope this helps :)
Shred red cabbage ~ (3/4 of a very small head)
Put the cabbage pieces in a small container ~ ( you can use a Pyrex-4-cup measure, a bowl or even a plastic zipper bag)
Cover the cabbage with very hot water. Let it sleep until the water has cooled. (somewhere between lukewarm and room-temperature)
The purple liquid you've made is your indicator.
Pour it into a container and compost the cabbage.
Now look for substances that may be acids or bases.
Liquids are good, like fruits.
You can also use solids around for baking are good too. (such as baking soda, salt, sugar, cream of tartar...)
Get containers for mixing (such as tea cups, because they are small, shallow and white inside)
Pour the indicator into the tea cups and add an acid or base.
Lemon juice, rice wine vinegar, and apple cider vinegar, turn the cabbage-water indicator into a pink.
Orange juice or fresh oranges (same thing) turn the cabbage-water indicator into an orangish-pinkish color.
Baking soda turns the cabbage-water indicator blue.
Milk (non-fat) turns the cabbage-water indicator turn opaque and milky, yet purple.
An egg white (which won't get into the solution immediately until after a lot of stirring) turns the cabbage-water indicator blue.
Hint:
Bases mostly turn the indicator towards blue-ish colors such as purple, light blue, dark blue, opaque blue...
Acids mostly turn the indicator towards pink-ish colours such as orange-ish pink, floral pink...
(You'll have to keep on testing the cabbage-water indicator in after a day or two to see if the indicator quality persists or degrades.
Answer:
65.08 g.
Explanation:
- For the reaction, the balanced equation is:
<em>2AlCl₃ + 3Br₂ → 2AlBr₃ + 3Cl₂,</em>
2.0 mole of AlCl₃ reacts with 3.0 mole of Br₂ to produce 2.0 mole of AlBr₃ and 3.0 mole of Cl₂.
- Firstly, we need to calculate the no. of moles of 36.2 grams of AlCl₃:
<em>n = mass/molar mass</em> = (36.2 g)/(133.34 g/mol) = <em>0.2715 mol.</em>
<u><em>Using cross multiplication:</em></u>
2.0 mole of AlCl₃ reacts with → 3.0 mole of Br₂, from the stichiometry.
0.2715 mol of AlCl₃ reacts with → ??? mole of Br₂.
∴ The no. of moles of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = (0.2715 mol)(3.0 mole)/(2.0 mole) = 0.4072 mol.
<em>∴ The mass of Br₂ reacts completely with 0.2715 mol (36.2 g) of AlCl₃ = no. of moles of Br₂ x molar mass</em> = (0.4072 mol)(159.808 g/mol
) = <em>65.08 g.</em>
No. It will not still be full. The reason being is because when it melts, it's almost the same thing as compacting things down into another object (container). Therefore, you will have some room left i the glass. Like, if your trashcan was over-flowing, and you push it down to compact it so you can add more trash. So when the ice melts, it will not be full.