Answer:
The mass's acceleration is 5 m/s^2 in the minus X direction and 9,8 m/s^2 in the minus Y direction.
Explanation:
By applying the second Newton's law in the X and Y direction we found that in the minus X direction an external force of 10 N is exerted, while in the minus Y direction the gravity acceleration is acting:
X-direction balance force:
Y-direction balance force:
Where ax and ay are the components of the respective acceleration and m is the mass. By solving for each acceleration:
Note that for the second equation above the mass is cancelled and, the Y direction acceleration is minus the gravity acceleration:
For the x component aceleration we must replace the Newton unit:

Answer:
The galaxy is moving away from the observer
Explanation: when a galaxy is moving away from us, the light we percieve from it is "streched". Since the wavelength has an inverse raltionship whith frequency, the longer the wavelength is, the lower the frequency. And lower frequencies correspond to red and infrarred light.
So when we see the light has shifted to the infrarred part of the spectrum, it means the source is traveling away from us, making the light waves we percieve streched and move from visible light to infrarred.
Answer:
<em>The distance the car traveled is 21.45 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It occurs when an object changes its velocity at the same rate thus the acceleration is constant.
The relation between the initial and final speeds is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Solving [1] for a:

Substituting the given data vo=0, vf=6.6 m/s, t=6.5 s:


The distance is now calculated with [2]:

x = 21.45 m
The distance the car traveled is 21.45 m
Answer:
I thinck it would be 48.0
Answer:
In physics the standard unit of weight is Newton, and the standard unit of mass is the kilogram. On Earth, a 1 kg object weighs 9.8 N, so to find the weight of an object in N simply multiply the mass by 9.8 N. Or, to find the mass in kg, divide the weight by 9.8 N.
Explanation:
<em><u>Radhe</u></em><em><u> </u></em><em><u>Radhe</u></em><em><u>❤</u></em>