U mean how to connect them to your phone?
Answer:
Mechanical Engineering
Chemical Engineering
Civil Engineering
Explanation:
I got it from my old homework And I learn those at school ( Thank You For The Points)
Answer:A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.
Answer:
1. def pyramid_volume(base_length, base_width, pyramid_height):
2. volume = base_length*base_width*pyramid_height/3
3. return(volume)
Explanation step by step:
- In the first line of code, we define the function pyramid_volume and it's input parameters
- In the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3
- In the last line of code, we return the volume
In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.
Answer:
Explanation:
There are three points in time we need to consider. At point 0, the mango begins to fall from the tree. At point 1, the mango reaches the top of the window. At point 2, the mango reaches the bottom of the window.
We are given the following information:
y₁ = 3 m
y₂ = 3 m − 2.4 m = 0.6 m
t₂ − t₁ = 0.4 s
a = -9.8 m/s²
t₀ = 0 s
v₀ = 0 m/s
We need to find y₀.
Use a constant acceleration equation:
y = y₀ + v₀ t + ½ at²
Evaluated at point 1:
3 = y₀ + (0) t₁ + ½ (-9.8) t₁²
3 = y₀ − 4.9 t₁²
Evaluated at point 2:
0.6 = y₀ + (0) t₂ + ½ (-9.8) t₂²
0.6 = y₀ − 4.9 t₂²
Solve for y₀ in the first equation and substitute into the second:
y₀ = 3 + 4.9 t₁²
0.6 = (3 + 4.9 t₁²) − 4.9 t₂²
0 = 2.4 + 4.9 (t₁² − t₂²)
We know t₂ = t₁ + 0.4:
0 = 2.4 + 4.9 (t₁² − (t₁ + 0.4)²)
0 = 2.4 + 4.9 (t₁² − (t₁² + 0.8 t₁ + 0.16))
0 = 2.4 + 4.9 (t₁² − t₁² − 0.8 t₁ − 0.16)
0 = 2.4 + 4.9 (-0.8 t₁ − 0.16)
0 = 2.4 − 3.92 t₁ − 0.784
0 = 1.616 − 3.92 t₁
t₁ = 0.412
Now we can plug this into the original equation and find y₀:
3 = y₀ − 4.9 t₁²
3 = y₀ − 4.9 (0.412)²
3 = y₀ − 0.83
y₀ = 3.83
Rounded to two significant figures, the height of the tree is 3.8 meters.