1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
12

Help please!!!!!

Engineering
1 answer:
Lady_Fox [76]3 years ago
4 0
I think it’s the last one, to examine principles that influence the production of goods and services
You might be interested in
Air at 293k and 1atm flow over a flat plate at 5m/s. The plate is 5m wide and 6m long. (a) Determine the boundary layer thicknes
loris [4]

Answer:

a). 8.67 x 10^{-3} m

b).0.3011 m

c).0.0719 m

d).0.2137 N

e).1.792 N

Explanation:

Given :

Temperature of air, T = 293 K

Air Velocity, U = 5 m/s

Length of the plate is L  = 6 m

Width of the plate is b = 5 m

Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X 10^{-5} Pa-s

We know density of air is ρ = 1.21 kg /m^{3}

Now we can find the Reyonld no at x = 1 m from the leading edge

Re = \frac{\rho .U.x}{\mu }

Re = \frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }

Re = 332052.6

Therefore the flow is laminar.

Hence boundary layer thickness is

δ = \frac{5.x}{\sqrt{Re}}

   = \frac{5\times 1}{\sqrt{332052.6}}

   = 8.67 x 10^{-3} m

a). Boundary layer thickness at x = 1 is δ = 8.67 X 10^{-3} m

b). Given Re = 100000

    Therefore the critical distance from the leading edge can be found by,

     Re = \frac{\rho .U.x}{\mu }

     100000 = \frac{1.21\times5\times x}{1.822 \times10^{-5}}

     x = 0.3011 m

c). Given x = 3 m from the leading edge

    The Reyonld no at x = 3 m from the leading edge

     Re = \frac{\rho .U.x}{\mu }

     Re = \frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }

     Re = 996158.06

Therefore the flow is turbulent.

Therefore for a turbulent flow, boundary layer thickness is

    δ = \frac{0.38\times x}{Re^{\frac{1}{5}}}

       = \frac{0.38\times 3}{996158.06^{\frac{1}{5}}}

       = 0.0719 m

d). Distance from the leading edge upto which the flow will be laminar,

  Re = \frac{\rho \times U\times x}{\mu }

5 X 10^{5} = \frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}

 x = 1.505 m

We know that the force acting on the plate is

F_{D} = \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

and C_{D} at x= 1.505 for a laminar flow is = \frac{1.328}{\sqrt{Re}}

                                                                         = \frac{1.328}{\sqrt{5\times10 ^{5}}}

                                                                       = 1.878 x 10^{-3}

Therefore, F_{D} =  \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

                                          = \frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}

                                         = 0.2137 N

e). The flow is turbulent at the end of the plate.

  Re = \frac{\rho \times U\times x}{\mu }

       = \frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }

       = 1992316

Therefore C_{D} = \frac{0.072}{Re^{\frac{1}{5}}}

                                           = \frac{0.072}{1992316^{\frac{1}{5}}}

                                           = 3.95 x 10^{-3}

Therefore F_{D} = \frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}

                                           = \frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}

                                          = 1.792 N

3 0
3 years ago
Tech A says that in some cases, the electronic brake control module can be programmed with a new tire size to restore proper ele
Vlad [161]

Answer:

Both Techs A and B

Explanation:

Electronic braking systems are controlled by the electronic brake control module. It is a microprocessor that processes information from wheel-speed sensors and the hydraulic brake system to determine when to release braking pressure at a wheel that's about to lock up and start skidding  and activates the anti lock braking system or traction system when it detects it is necessary.

Some electronic brake control modules can be programmed to the size of the vehicle's new tires to restore proper electronic brake control performance. While others may require replacing the module to match the module's programming to the installed tire size. So, both technicians A and B are correct.

3 0
3 years ago
A river has an average rate of water flow of 59.6 M3/s. This river has three tributaries, tributary A, B and C, which account fo
Fiesta28 [93]

Answer:

50421.6 m³

Explanation:

The river has an average rate of water flow of 59.6 m³/s.

Tributary B accounts for 47% of the rate of water flow. Therefore the rate of water flow through tributary B is:

Flow rate of water through tributary B = 47% of 59.6 m³/s = 0.47 * 59.6 m³/s = 28.012 m³/s

The volume of water that has been discharged through tributary B = Flow rate of water through tributary B * time taken

time = 30 minutes = 30 minutes * 60 seconds / minute = 1800 seconds

The volume of water that has been discharged through tributary B in 30 seconds = 28.012 m³/s * 1800 seconds = 50421.6 m³

3 0
3 years ago
A rigid insulated tank is divided into 2 equal compartments by a thin rigid partition. One of the compartments contains air, ass
Illusion [34]
Https://www.slader.com/discussion/question/an-insulated-rigid-tank-is-divided-into-two-equal-parts-by-a-partition-initially-one-part-contains-4/



there will be the answer

6 0
3 years ago
The structure of a house is such that it loses heat at a rate of 4500kJ/h per °C difference between the indoors and outdoors. A
adelina 88 [10]

Answer:

15.24°C

Explanation:

The quality of any heat pump pumping heat from cold to hot place is determined by its coefficient of performance (COP) defined as

COP=\frac{Q_{in}}{W}

Where Q_{in} is heat delivered into the hot place, in this case, the house, and W is the work used to pump heat

You can think of this quantity as similar to heat engine's efficiency

In our case, the COP of our heater is

COP_{heater} = \frac{\frac{4500\ kJ}{3600\ s} *(T_{house}-T_{out})}{4\ kW}

Where T_{house} = 24°C and T_{out} is temperature outside

To achieve maximum heating, we will have to use the most efficient heat pump, and, according to the second law of thermodynamics, nothing is more efficient that Carnot Heat Pump

Which has COP of:

COP_{carnot}=\frac{T_{house}}{T_{house}-T_{out}}

So we equate the COP of our heater with COP of Carnot heater

\frac{1.25 *(T_{house}-T_{out})}{4}=\frac{T_{house}}{T_{house}-T_{out}}

Rearrange the equation

\frac{1.25}{4}(24-T_{out})^2-24=0

Solve this simple quadratic equation, and you should get that the lowest outdoor temperature that could still allow heat to be pumped into your house would be

15.24°C

4 0
3 years ago
Other questions:
  • A tendon-operated robotic hand can be implemented using a pneumatic actuator. The actuator can be represented by
    15·1 answer
  • There is a proposal in Brooklyn to construct a new mid-rise apartment building on a vacant lot at the intersection of Avenue A a
    8·1 answer
  • An air conditioner removes heat steadily from a house at a rate of 750 kJ/min while drawing electric power at a rate of 6 kW. De
    5·1 answer
  • Which process is a from of mechanical weathering
    8·1 answer
  • How many volts does one cell produce?
    14·2 answers
  • Which of the following is an example of an iterative process?
    12·1 answer
  • Which of the following is not an example of heat generation? a)- Exothermic chemical reaction in a solid b)- Endothermic Chemica
    15·1 answer
  • What is the color of an original apple
    7·1 answer
  • Select the answer that shows how the recognition of depreciation expense
    10·1 answer
  • Should i show my face?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!