Answer:
Manufacturer’s Recommendations means the instructions, procedures, and recommendations which are issued by the manufacturer of any equipment used at the Facility relating to the operation, maintenance, or repair of such equipment, and any revisions or updates thereto from time to time issued by the manufacturer.
Manufacturer’s Recommendations means the instructions, procedures and recommendations which are issued by any manufacturer of the Equipment relating to the operation, maintenance and repair of the Equipment and any revisions to such instructions, procedures and recommendations agreed to by any manufacturer of the Equipment and which are valid at the time such operation, repair and maintenance is being carried out.
Manufacturer’s Recommendations means the written instructions, procedures and recommendations which are issued by the original equipment manufacturer of any plant or equipment used at the Utility Plant relating to the operation, maintenance and repair of such plant or equipment and any revisions thereto issued by the manufacturer, which are valid and applicable at the time such operation, maintenance or repair is undertaken. Notwithstanding the above, Manufacturer’s Recommendations shall not include any instructions, procedures or recommendations of a manufacturer of any plant or equipment that the Owner and the Operator have agreed in writing to exclude from this definition or have agreed in writing should not be followed.
Explanation:
Answer
For isotropic material plastic yielding depends upon magnitude of the principle stress not on the direction.
Tresca and Von Mises yield criteria are the yield model which is widely used.
The Tresca yield criterion stated that yielding will occur in a material only when the greatest maximum shear stress reaches a critical value.
max{|σ₁ - σ₂|,|σ₂ - σ₃|,|σ₃ - σ₁|} = σ_f
under plane stress condition
|σ₁ - σ₂| = σ_f
The Von mises yielding criteria stated that the yielding will occur when elastic energy of distortion reaches critical value.
σ₁² - σ₁ σ₂ + σ₂² = σ²_f
Answer:
Codes for each of the problems are explained below
Explanation:
PROBLEM 1 IN C++:
#include<iostream>
using namespace std;
//fib function that calculate nth integer of the fibonacci sequence.
void fib(int n){
// l and r inital fibonacci values for n=1 and n=2;
int l=1,r=1,c;
//if n==1 or n==2 then print 1.
if(n==1 || n==2){
cout << 1;
return;
}
//for loop runs n-2 times and calculates nth integer of fibonacci sequence.
for(int i=0;i<n-2;i++){
c=l+r;
l=r;
r=c;
cout << "(" << i << "," << c << ") ";
}
//prints nth integer of the fibonacci sequence stored in c.
cout << "\n" << c;
}
int main(){
int n; //declared variable n
cin >> n; //inputs n to find nth integer of the fibonacci sequence.
fib(n);//calls function fib to calculate and print fibonacci number.
}
PROBLEM 2 IN PYTHON:
def fib(n):
print("fib({})".format(n), end=' ')
if n <= 1:
return n
else:
return fib(n - 1) + fib(n - 2)
if __name__ == '__main__':
n = int(input())
result = fib(n)
print()
print(result)
Answer:
Detailed working is shown
Explanation:
The attached file shows a detailed step by step calculation..