1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
4 years ago
10

Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow

rate of 6 kg/s. The compressor pressure ratio is 10, and the inlet temperature for each turbine stage is 1400 K. The pressure ratios across each turbine stage are equal. The turbine stages and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k= 1.4.
Calculate:
a. the thermal efficiency of the cycle.
b. the back work ratio.
c. the net power developed, in kW.
Engineering
1 answer:
yanalaym [24]4 years ago
3 0

Answer:

a. 47.48%

b. 35.58%

c. 2957.715 KW

Explanation:

T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}

T₁ = 300 K

\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }

T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }

T_{2s} = 579.21 K

T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₄ = 1400 K

Given that the pressure ratios across each turbine stage are equal, we have;

\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }

T_{5s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }  = 1007.6 K

T₅ = T₄ + (T_{5s} - T₄)/\eta _t = 1400 + (1007.6- 1400)/0.8 = 909.5 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K

T₆ = 1400 K

\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }

T_{7s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }   = 1007.6 K

T₇ = T₆ + (T_{7s} - T₆)/\eta _t = 1400 + (1007.6 - 1400)/0.8 = 909.5 K

a. W_{net \ out} = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg

Heat supplied is given by the relation

cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg

Thermal efficiency of the cycle = (Net work output)/(Heat supplied)

Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%

b. bwr = \dfrac{W_{c,in}}{W_{t,out}}

bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)]  = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%

c. Power = 6 kg *492.9525 KJ/kg  = 2957.715 KW

You might be interested in
Hey answr this sajida Yusof
Allisa [31]
What do u need? Rusbaisuwvwbs
5 0
3 years ago
Read 2 more answers
Water flows through a pipe of 100 mm at the rate of 0.9 m3 per minute at section A. It tapers to 50mm diameter at B, A being 1.5
pochemuha

Answer:

The velocities in points A and B are 1.9 and 7.63 m/s respectively. The Pressure at point B is 28 Kpa.

Explanation:

Assuming the fluid to be incompressible we can apply for the continuity equation for fluids:

Aa.Va=Ab.Vb=Q

Where A, V and Q are the areas, velocities and volume rate respectively. For section A and B the areas are:

Aa=\frac{pi.Da^2}{4}= \frac{\pi.(0.1m)^2}{4}=7.85*10^{-3}\ m^3

Ab=\frac{pi.Db^2}{4}= \frac{\pi.(0.05m)^2}{4}=1.95*10^{-3}\ m^3

Using the volume rate:

Va=\frac{Q}{Aa}=\frac{0.9m^3}{7.85*10^{-3}\ m^3} = 1.9\ m/s

Vb = \frac{Q}{Ab}= \frac{0.9m^3}{1.96*10^{-3}\ m^3} = 7.63\ m/s

Assuming no losses, the energy equation for fluids can be written as:

Pa+\frac{1}{2}pa.Va^2+pa.g.za=Pb+\frac{1}{2}pb.Vb^2+pb.g.zb

Here P, V, p, z and g represent the pressure, velocities, height and gravity acceleration. Considering the zero height level at point A and solving for Pb:

Pb=Pa+\frac{1}{2}pa(Va^2-Vb^2)-pa.g.za

Knowing the manometric pressure in point A of 70kPa, the height at point B of 1.5 meters, the density of water of 1000 kg/m^3 and the velocities calculated, the pressure at B results:

Pb = 70000Pa+ \frac{1}{2}*1000\ \frac{kg}{m^3}*((1.9m/s)^2 - (7.63m/s)^2) - 1000\frac{kg}{m^3}*9,81\frac{m}{s^2}*1.5m

Pb = 70000\ Pa-27303\ Pa - 14715\ Pa

Pb = 27,996\ Pa = 28\ kPa

6 0
3 years ago
An aircraft is flying at 300 mph true airspeed has a 50 mph tailwind. What is its ground speed?
Free_Kalibri [48]

Answer:

304.13 mph

Explanation:

Data provided in the question :

The Speed of the flying aircraft = 300 mph

Tailwind of the true airspeed = 50 mph

Now,

The ground speed will be calculated as:

ground speed = \sqrt{300^2+50^2}

or

The ground speed = \sqrt{92500}

or

The ground speed = 304.13 mph

Hence, the ground speed is 304.13 mph

8 0
4 years ago
WHAT IS THE EFFECT OF ICE ACCRETION ON THE LONGITUDINAL STABILITY OF AN AIRCRAFT?
soldier1979 [14.2K]

Answer:

The major effects of ice accretion on the aircraft is that it disturbs the flow of air and effects the aircraft's performance.

Explanation:

The ice accretion effects the longitudinal stability of an aircraft as:

1. The accumulation of ice on the tail of an aircraft results in the reduction the longitudinal stability and  the elevator's efficacy.

2. When the flap is deflected at 10^{\circ} with no power there is an increase in the longitudinal velocity.  

3. When the angle of attack is higher close to the stall where separation occurs in the early stages of flow, the effect of ice accretion are of importance.  

4. When the situation involves no flap  at reduced power setting results in the decrease in aircraft's longitudinal stability an increase in change in coefficient of pitching moment  with attack angle.

5 0
4 years ago
A stress of 2500 psi is applied to a polymer serving as a fastener in a complex assembly. At a constant strain, the stress drops
sesenic [268]
Very very hard to answer
6 0
3 years ago
Other questions:
  • 10 kg/s Propane at 10 bar and 20 C is directed to an adiabatic rigid mixer and is mixed with 20 kg/s Propane at 10 bar and 40 C.
    11·1 answer
  • If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is th
    5·1 answer
  • How do we define energy efficiency
    9·2 answers
  • Two technicians are discussing a vehicle that will not start. Tech A states that a problem with the immobilizer system may be th
    9·1 answer
  • When the psychologist simply records the relationship between two variables...
    8·1 answer
  • What’s tree about freedom of expression
    11·1 answer
  • Inductors in series obey the same formula as resistors in series. That is, if you connect two inductors are in series, the equiv
    12·1 answer
  • Stucco will shrink as it hardens and cures.<br> A. true<br> B. false
    11·1 answer
  • What is noise definition in physics<br><br>​
    15·1 answer
  • Based on your client's request, you will now create a sketch model of your designed pet toy. You will use your technical sketch
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!