1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
10

Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow

rate of 6 kg/s. The compressor pressure ratio is 10, and the inlet temperature for each turbine stage is 1400 K. The pressure ratios across each turbine stage are equal. The turbine stages and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k= 1.4.
Calculate:
a. the thermal efficiency of the cycle.
b. the back work ratio.
c. the net power developed, in kW.
Engineering
1 answer:
yanalaym [24]3 years ago
3 0

Answer:

a. 47.48%

b. 35.58%

c. 2957.715 KW

Explanation:

T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}

T₁ = 300 K

\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }

T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }

T_{2s} = 579.21 K

T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₄ = 1400 K

Given that the pressure ratios across each turbine stage are equal, we have;

\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }

T_{5s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }  = 1007.6 K

T₅ = T₄ + (T_{5s} - T₄)/\eta _t = 1400 + (1007.6- 1400)/0.8 = 909.5 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K

T₆ = 1400 K

\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }

T_{7s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }   = 1007.6 K

T₇ = T₆ + (T_{7s} - T₆)/\eta _t = 1400 + (1007.6 - 1400)/0.8 = 909.5 K

a. W_{net \ out} = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg

Heat supplied is given by the relation

cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg

Thermal efficiency of the cycle = (Net work output)/(Heat supplied)

Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%

b. bwr = \dfrac{W_{c,in}}{W_{t,out}}

bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)]  = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%

c. Power = 6 kg *492.9525 KJ/kg  = 2957.715 KW

You might be interested in
Yall know what this is called?​
aliya0001 [1]

Answer:

oof no bro

Explanation:

5 0
3 years ago
Which of the following ranges depicts the 2% tolerance range to the full 9 digits provided?
Lyrx [107]

Answer:

the only one that meets the requirements is option C .

Explanation:

The tolerance of a quantity is the maximum limit of variation allowed for that quantity.

To find it we must have the value of the magnitude, its closest value is the average value, this value can be given or if it is not known it is calculated with the formula

         x_average = ∑ x_{i} / n

The tolerance or error is the current value over the mean value per 100

         Δx₁ = x₁ / x_average

         tolerance = | 100 -Δx₁  100 |

bars indicate absolute value

let's look for these values ​​for each case

a)

    x_average = (2.1700000+ 2.258571429) / 2

    x_average = 2.2142857145

fluctuation for x₁

        Δx₁ = 2.17000 / 2.2142857145

        Tolerance = 100 - 97.999999991

        Tolerance = 2.000000001%

fluctuation x₂

        Δx₂ = 2.258571429 / 2.2142857145

        Δx2 = 1.02

        tolerance = 100 - 102.000000009

        tolerance 2.000000001%

b)

    x_average = (2.2 + 2.29) / 2

    x_average = 2,245

fluctuation x₁

         Δx₁ = 2.2 / 2.245

         Δx₁ = 0.9799554

         tolerance = 100 - 97,999

         Tolerance = 2.00446%

fluctuation x₂

          Δx₂ = 2.29 / 2.245

          Δx₂ = 1.0200445

          Tolerance = 2.00445%

c)

   x_average = (2.211445 +2.3) / 2

   x_average = 2.2557225

       Δx₁ = 2.211445 / 2.2557225 = 0.9803710

       tolerance = 100 - 98.0371

       tolerance = 1.96%

       Δx₂ = 2.3 / 2.2557225 = 1.024624

       tolerance = 100 -101.962896

       tolerance = 1.96%

d)

   x_average = (2.20144927 + 2.29130435) / 2

   x_average = 2.24637681

       Δx₁ = 2.20144927 / 2.24637681 = 0.98000043

       tolerance = 100 - 98.000043

       tolerance = 2.000002%

       Δx₂ = 2.29130435 / 2.24637681 = 1.0200000017

       tolerance = 2.0000002%

e)

   x_average = (2 +2,3) / 2

   x_average = 2.15

   Δx₁ = 2 / 2.15 = 0.93023

   tolerance = 100 -93.023

   tolerance = 6.98%

   Δx₂ = 2.3 / 2.15 = 1.0698

   tolerance = 6.97%

Let's analyze these results, the result E is clearly not in the requested tolerance range, the other values ​​may be within the desired tolerance range depending on the required precision, for the high precision of this exercise the only one that meets the requirements is option C .

4 0
3 years ago
Can someone answer plz!! It’s 24 points
fgiga [73]

Explanation:

750 microvolt is your answer

please mark as brilliant

3 0
3 years ago
Read 2 more answers
Which explanation best identifies why the company in the following scenario has decided against investing in solar energy?
pickupchik [31]

Answer:

The company found the cost of the required photovoltaic cells too expensive.

Explanation:

Solar energy can be used as an alternative source of supply for fuel. Solar energy is a renewable source of energy, that is it keeps on replenishing every day. Also solar energy does not require a lot of maintenance.

The cost required is starting a solar system is very high because one needs to buy solar panel, photovoltaic cells for batteries, inverters and so on.

From the question, the company decided against solar energy for the time being. This means that probably in the future they might consider it. Therefore it is as a result of the economic situation of the company that they have not set up a solar system because the cost of the required photovoltaic cells too expensive.

8 0
3 years ago
Which of the following tools might civil engineers use when designing roads in a recently constructed industrial park?
Dmitry [639]

Answer:D. Gunter's Chain

Explanation:I know this because a gunter's chain is used for plots of land to be accurately surveyed and plotted, for legal and commercial purposes.

6 0
3 years ago
Read 2 more answers
Other questions:
  • In electric heaters, electrical energy is converted to potential energy. a)-True b)-false?
    11·1 answer
  • Plot the following trig functions using subplots, choosing an appropriate layout for the number of functions displayed. The subp
    8·1 answer
  • A controller on an electronic arcade game consists of a variable resistor connected across the plates of a 0.227 μF capacitor. T
    6·1 answer
  • 1. What are the usual symptoms of brake issues?​
    15·1 answer
  • g The parameters of a certain transmission line operating at 휔휔=6 ×108 [rad/s] are 퐿퐿=0.35 [휇휇H/m], 퐶퐶=75 [pF/m], 퐺퐺=75 [휇휇S/m],
    12·1 answer
  • Electricians will sometimes call ______ "disconnects" or a "disconnecting means."
    15·1 answer
  • Practice finding the volume of a sphere.
    10·2 answers
  • Air is compressed steadily from 100kPa and 20oC to 1MPa by an adiabatic compressor. If the mass flow rate of the air is 1kg/s an
    12·1 answer
  • ENERGIA
    7·1 answer
  • 1) Plastics that soften when heated,harden when cooled, and then can be heated and softened many times
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!