1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
10

Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow

rate of 6 kg/s. The compressor pressure ratio is 10, and the inlet temperature for each turbine stage is 1400 K. The pressure ratios across each turbine stage are equal. The turbine stages and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k= 1.4.
Calculate:
a. the thermal efficiency of the cycle.
b. the back work ratio.
c. the net power developed, in kW.
Engineering
1 answer:
yanalaym [24]3 years ago
3 0

Answer:

a. 47.48%

b. 35.58%

c. 2957.715 KW

Explanation:

T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}

T₁ = 300 K

\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }

T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }

T_{2s} = 579.21 K

T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₄ = 1400 K

Given that the pressure ratios across each turbine stage are equal, we have;

\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }

T_{5s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }  = 1007.6 K

T₅ = T₄ + (T_{5s} - T₄)/\eta _t = 1400 + (1007.6- 1400)/0.8 = 909.5 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K

T₆ = 1400 K

\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }

T_{7s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }   = 1007.6 K

T₇ = T₆ + (T_{7s} - T₆)/\eta _t = 1400 + (1007.6 - 1400)/0.8 = 909.5 K

a. W_{net \ out} = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg

Heat supplied is given by the relation

cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg

Thermal efficiency of the cycle = (Net work output)/(Heat supplied)

Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%

b. bwr = \dfrac{W_{c,in}}{W_{t,out}}

bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)]  = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%

c. Power = 6 kg *492.9525 KJ/kg  = 2957.715 KW

You might be interested in
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
ankoles [38]

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ_{fs} = F_{f} L / \pi  R^{3}

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

F_{f} = 2 σ_{fs} d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

4 0
3 years ago
The boy in the wagon begins throwing bricks out of the wagon to simulate rocket propulsion. The wagon begins at rest, and the bo
Digiron [165]

Q:What velocity does the boy attain if he throws the bricks one at a time?

Answer:Linear velocity since it moves back and firth and does not rotate like angular velocity.

5 0
2 years ago
8. Two 40 ft long wires made of differing materials are supported from the ceiling of a testing laboratory. Wire (1) is made of
san4es73 [151]

Answer:

Material K has a modulus of elasticity E=3.389× 10¹¹ Pa

Material H has a modulus of elasticity E=1.009 × 10⁹ Pa

Material K has higher value of modulus of elasticity than material H

Material K is stiffer.

Explanation:

Wire 1 material H

Length=L = 40 ft =12.192 m

Diameter= 3/8 in = 0.009525 m

Area= A= πr²,where r=0.009525/2 =0.004763

A=3.142*0.004763² =0.00007126 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.10 in = 0.00254

To find modulus of elasticity apply'

E=F*L/A*ΔL

E=1001.25*12.192/(0.004763*0.00254)

E= 1009027923.58 Pa

E=1.009 × 10⁹ Pa

For Wire 2 material K

Length=L= 40 ft =12.192 m

Diameter = 3/16 in = 0.1875 in = 0.004763 m

Area= πr² = 3.142 * (0.004763/2)² = 0.00000567154 m²

Force, F= 225 lb=  225*4.45 =1001.25 N

Change in length =Δ L= 0.25 in =0.00635 m

To find modulus of elasticity apply'

E=F*L/A*ΔL

E= (1001.25*12.192)/(0.00000567154 * 0.00635 )

E=338955422575 Pa

E=3.389× 10¹¹ Pa

Material  K has a greater modulus of elasticity

The material with higher value of E is stiffer than that with low value of E.The stiffer material is K.

8 0
3 years ago
In a certain chemical plant, a closed tank contains ethyl alcohol to a depth of 71 ft. Air at a pressure of 17 psi fills the gap
Yuliya22 [10]

Answer:

the pressure at a closed valve attached to the tank 10 ft above its bottom is 37.88 psi

Explanation:

Given that;

depth 1 = 71 ft

depth 2 = 10 ft

pressure p = 17 psi = 2448 lb/ft²

depth h = 71 ft - 10 ft = 61 ft

we know that;

p = P_air + yh

where y is the specific weight of ethyl alcohol ( 49.3 lb/ft³ )

so we substitute;

p = 2448 + ( 49.3 × 61 )

= 2448 + 3007.3

= 5455.3 lb/ft³

= 37.88 psi

Therefore, the pressure at a closed valve attached to the tank 10 ft above its bottom is 37.88 psi

5 0
3 years ago
What is the measurement of mass in motion is known as
podryga [215]

Answer:

momentum

Explanation:

Mass - Mass is a measurement of how much matter is in an object. It is usually measured in kilograms. Momentum is equal to the mass times the velocity of an object. Momentum is a measurement of mass in motion

8 0
3 years ago
Other questions:
  • a vertical cylindrical container is being cooled in ambient air at 25 °C with no air circulation. if the initial temperature of
    12·2 answers
  • How to identify this fossil
    9·1 answer
  • What are the important things to remember when arriving for an interview?
    15·1 answer
  • A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
    13·1 answer
  • Build a 32-bit accumulator circuit. The circuit features a control signal inc and enable input en. If en is 1 and inc is 1, the
    13·1 answer
  • A carbon resistor has a resistance of 976 ohms at 0 degrees C. Determine its resistance at 89 degrees C​
    6·1 answer
  • A continuous function y = ƒ(x) is known to be negative at x = 0 and positive at x = 1. Why does the equation ƒ(x) = 0 have at le
    14·1 answer
  • What is the name of the part of the expressway where cars can both enter and exit?
    15·1 answer
  • 4. What are these parts commonly called?
    13·1 answer
  • If you deposit today 11,613 in an account earning 8% compound interest, for how long should you invest the money in order to ear
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!