1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
4 years ago
10

Air enters the compressor of a cold air-standard Brayton cycle with regeneration and reheat at 100 kPa, 300 K, with a mass flow

rate of 6 kg/s. The compressor pressure ratio is 10, and the inlet temperature for each turbine stage is 1400 K. The pressure ratios across each turbine stage are equal. The turbine stages and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. For k= 1.4.
Calculate:
a. the thermal efficiency of the cycle.
b. the back work ratio.
c. the net power developed, in kW.
Engineering
1 answer:
yanalaym [24]4 years ago
3 0

Answer:

a. 47.48%

b. 35.58%

c. 2957.715 KW

Explanation:

T_2 =T_1 + \dfrac{T_{2s} - T_1}{\eta _c}

T₁ = 300 K

\dfrac{T_{2s}}{T_1} = \left( \dfrac{P_{2}}{P_1} \right)^{\dfrac{k-1}{k} }

T_{2s} = 300 \times (10) ^{\dfrac{0.4}{1.4} }

T_{2s} = 579.21 K

T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₄ = 1400 K

Given that the pressure ratios across each turbine stage are equal, we have;

\dfrac{T_{5s}}{T_4} = \left( \dfrac{P_{5}}{P_4} \right)^{\dfrac{k-1}{k} }

T_{5s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }  = 1007.6 K

T₅ = T₄ + (T_{5s} - T₄)/\eta _t = 1400 + (1007.6- 1400)/0.8 = 909.5 K

T₃ = T₂ + \epsilon _{regen}(T₅ - T₂)

T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K

T₆ = 1400 K

\dfrac{T_{7s}}{T_6} = \left( \dfrac{P_{7}}{P_6} \right)^{\dfrac{k-1}{k} }

T_{7s} = 1400×\left( 1/\sqrt{10}  \right)^{\dfrac{0.4}{1.4} }   = 1007.6 K

T₇ = T₆ + (T_{7s} - T₆)/\eta _t = 1400 + (1007.6 - 1400)/0.8 = 909.5 K

a. W_{net \ out} = cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg

Heat supplied is given by the relation

cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg

Thermal efficiency of the cycle = (Net work output)/(Heat supplied)

Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%

b. bwr = \dfrac{W_{c,in}}{W_{t,out}}

bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)]  = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%

c. Power = 6 kg *492.9525 KJ/kg  = 2957.715 KW

You might be interested in
By using order of magnitude analysis, the continuity and Navier-Stokes equations can be simplified to the Prandtl boundary-layer
Mademuasel [1]

Answer: Attached below is the well written question and solution

answer:

i) Attached below

ii) similar parameter =  \frac{V}{VoL } = 1 / Re

Explanation:

Using ;  L as characteristic length and Vo as reference velocity

i) Nondimensionalize the equations

ii) Identifying similarity parameters

the similar parameters are  = \frac{V}{VoL } = 1 / Re

Attached below is the detailed solution

7 0
2 years ago
python Given num_rows and num_cols, print a list of all seats in a theater. Rows are numbered, columns lettered, as in 1A or 3E.
MissTica

Explanation:

First of all get the input from the user, number of rows and number of columns where rows represents seat digit number and column represents the seat letter

rows is initialized to 1 to ensure that row starts at 1 or you can remove it then seat number will start from 0.

The first loop is used for digits starting from 1 to number of rows

The second loop is used for letters starting from 1 to number of columns

since rows and cols are not of the same type that's why we are converting the int type to string type

print(str(rows)+cols) counter will keep updating the columns A, B, C.....

rows= rows + 1 counter will keep updating the rows 1, 2, 3....

Code:

Please refer to the attached image.

Output:

Please enter the number of rows: 2

Please enter the number of columns: 3

1A

1B

1C

2A

2B

2C

3 0
3 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
8090 [49]

Answer:

a) The change in Kinetic energy, KE = -1.95 kJ

b) Power output, W = 10221.72 kW

c) Turbine inlet area, A_1 = 0.0044 m^2

Explanation:

a) Change in Kinetic Energy

For an adiabatic steady state flow of steam:

KE = \frac{V_2^2 - V_1^2}{2} \\.........(1)

Where Inlet velocity,  V₁ = 80 m/s

Outlet velocity, V₂ = 50 m/s

Substitute these values into equation (1)

KE = \frac{50^2 - 80^2}{2} \\

KE = -1950 m²/s²

To convert this to kJ/kg, divide by 1000

KE = -1950/1000

KE = -1.95 kJ/kg

b) The power output, w

The equation below is used to represent a  steady state flow.

q - w = h_2 - h_1 + KE + g(z_2 - z_1)

For an adiabatic process, the rate of heat transfer, q = 0

z₂ = z₁

The equation thus reduces to :

w = h₁ - h₂ - KE...........(2)

Where Power output, W = \dot{m}w..........(3)

Mass flow rate, \dot{m} = 12 kg/s

To get the specific enthalpy at the inlet, h₁

At P₁ = 10 MPa, T₁ = 450°C,

h₁ = 3242.4 kJ/kg,

Specific volume, v₁ = 0.029782 m³/kg

At P₂ = 10 kPa, h_f = 191.81 kJ/kg, h_{fg} = 2392.1 kJ/kg, x₂ = 0.92

specific enthalpy at the outlet, h₂ = h_1 + x_2 h_{fg}

h₂ = 3242.4 + 0.92(2392.1)

h₂ = 2392.54 kJ/kg

Substitute these values into equation (2)

w = 3242.4 - 2392.54 - (-1.95)

w = 851.81 kJ/kg

To get the power output, put the value of w into equation (3)

W = 12 * 851.81

W = 10221.72 kW

c) The turbine inlet area

A_1V_1 = \dot{m}v_1\\\\A_1 * 80 = 12 * 0.029782\\\\80A_1 = 0.357\\\\A_1 = 0.357/80\\\\A_1 = 0.0044 m^2

3 0
3 years ago
Durante el segundo trimestre de 2001, Tiger Woods fue el golfista que más dinero ganó en el PGATour. Sus ganancias sumaron un to
ehidna [41]

Answer: a. 0.4667

b. 0.4667 and C 0.0667

Explanation:

Given Data:

N = population size (10)

n = random selection (2)

r = number of observations = 7

Therefore

f(y) = ( r/y ) ( N - r / n - y ) / ( N /n )

When y = 1

f(1) = ( 7/1 ) ( 10 - 7 / 2 -1 ) / ( 10/2 )

= 7 / 15

= 0.4667

When y = 2

f(2) = ( 7/2 ) ( 10 - 7 / 2 -2 ) / ( 10/2 )

= 7 / 15

= 0.4667

When y = 0

f(0) = ( 7/0 ) ( 10 - 7 / 2 -0) / ( 10/2 )

= 1 / 15

= 0.0667

8 0
3 years ago
Gold forms a substitutional solid solution with silver. Compute the number of gold atoms per cubic centimeter for a silver-gold
evablogger [386]

Answer:

Compute the number of gold atoms per cubic centimeter = 9.052 x 10^21 atoms/cm3

Explanation:

The step by step and appropriate substitution is as shown in the attachment.

From number of moles = Concentration x volume

number of moles = number of particles/ Avogadro's number

Volume = mass/density, the appropriate derivation to get the number of moles of atoms

5 0
3 years ago
Other questions:
  • Why research and development in Maintenance Engineering?
    6·1 answer
  • A soil has the following Green-Ampt parameters Effective porosity 0.400 Initial volumetric moisture content-15% Hydraulic Conduc
    6·1 answer
  • The critical resolved shear stress for iron is 27 MPa (4000 psi). Determine the maximum possible yield strength for a single cry
    12·1 answer
  • A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
    8·1 answer
  • A city emergency management agency and a construction company have formed a public-private partnership. The construction company
    15·1 answer
  • Some chemical reaction is being run inside a sealed gas cylinder. During the reaction, a gaseous product is formed. The pressure
    14·1 answer
  • Draw the sequence of BSTs that results when you insert the keys E, A, S, Y, Q, U, E, S, T, I, O, N, in that order into an initia
    10·1 answer
  • In water and wastewater treatment processes a filtration device may be used to remove water from the sludge formed by a precipit
    10·1 answer
  • Oliver is designing a new children’s slide to increase the speed at which a child can descend. His first design involved steel b
    15·1 answer
  • Why do engineers play a variety of roles in the engineering process?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!