1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
10

A sinusoidal wave of frequency 420 Hz has a speed of 310 m/s. (a) How far apart are two points that differ in phase by π/8 rad?

(b) What is the phase difference between two displacements at a certain point at times 1.6 ms apart?
Engineering
1 answer:
Olin [163]3 years ago
8 0

Answer:

a) Two points that differ in phase by π/8 rad are 0.0461 m apart.

b) The phase difference between two displacements at a certain point at times 1.6 ms apart is 4π/3.

Explanation:

f = 420 Hz, v = 310 m/s, λ = wavelength = ?

v = fλ

λ = v/f = 310/420 = 0.738 m

T = periodic time of the wave = 1/420 = 0.00238 s = 0.0024 s = 2.4 ms

a) Two points that differ in phase by π/8 rad

In terms of the wavelength of the wave, this is equivalent to [(π/8)/2π] fraction of a wavelength,

[(π/8)/2π] = 1/16 of a wavelength = (1/16) × 0.738 = 0.0461 m

b) two displacements at times 1.6 ms apart.

In terms of periodic time, 1.6ms is (1.6/2.4) fraction of the periodic time.

1.6/2.4 = 2/3.

This means those two points are 2/3 fraction of a periodic time away from each other.

1 complete wave = 2π rad

Points 2/3 fraction of a wave from each other will have a phase difference of 2/3 × 2π = 4π/3.

You might be interested in
Refrigerant-134a at 400 psia has a specific volume of 0.1144 ft3/lbm. Determine the temperature of the refrigerant based on (a)
vekshin1

Answer:

a) Using Ideal gas Equation, T = 434.98°R = 435°R

b) Using Van Der Waal's Equation, T = 637.32°R = 637°R

c) T obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is T = 559.67°R = 560°R

Explanation:

a) Ideal gas Equation

PV = mRT

T = PV/mR

P = pressure = 400 psia

V/m = specific volume = 0.1144 ft³/lbm

R = gas constant = 0.1052 psia.ft³/lbm.°R

T = 400 × 0.1144/0.1052 = 434.98 °R

b) Van Der Waal's Equation

T = (1/R) (P + (a/v²)) (v - b)

a = Van Der Waal's constant = (27R²(T꜀ᵣ)²)/(64P꜀ᵣ)

R = 0.1052 psia.ft³/lbm.°R

T꜀ᵣ = critical temperature for refrigerant-134a (from the refrigerant tables) = 673.6°R

P꜀ᵣ = critical pressure for refrigerant-134a (from the refrigerant tables) = 588.7 psia

a = (27 × 0.1052² × 673.6²)/(64 × 588.7)

a = 3.596 ft⁶.psia/lbm²

b = (RT꜀ᵣ)/8P꜀ᵣ

b = (0.1052 × 673.6)/(8 × 588.7) = 0.01504 ft³/lbm

T = (1/0.1052) (400 + (3.596/0.1144²) (0.1144 - 0.01504) = 637.32°R

c) The temperature for the refrigerant-134a as obtained from the refrigerant tables at P = 400 psia and v = 0.1144 ft³/lbm is

T = 100°F = 559.67°R

7 0
3 years ago
A pipeline (NPS = 14 in; schedule = 80) has a length of 200 m. Water (15℃) is flowing at 0.16 m3/s. What is the pipe head loss f
dangina [55]

Answer:

Head loss is 1.64

Explanation:

Given data:

Length (L) = 200 m

Discharge (Q) = 0.16 m3/s

According to table of nominal pipe size , for schedule 80 , NPS 14,  pipe has diameter (D)= 12.5 in or 31.8 cm 0.318 m

We know, head\ loss  = \frac{f L V^2}{( 2 g D)}

where, f = Darcy friction factor

V = flow velocity

g = acceleration due to gravity

We know, flow rate Q = A x V

solving for V

V = \frac{Q}{A}

    = \frac{0.16}{\frac{\pi}{4} (0.318)^2} = 2.015 m/s

obtained Darcy friction factor  

calculate Reynold number (Re) ,

Re = \frac{\rho V D}{\mu}

where,\rho = density of water

\mu = Dynamic viscosity of water at 15 degree  C = 0.001 Ns/m2

so reynold number is

Re = \frac{1000\times 2.015\times 0.318}{0.001}

            = 6.4 x 10^5

For Schedule 80 PVC pipes , roughness (e) is  0.0015 mm

Relative roughness (e/D) = 0.0015 / 318 = 0.00005

from Moody diagram, for Re = 640000 and e/D = 0.00005 , Darcy friction factor , f = 0.0126

Therefore head loss is

HL = \frac{0.0126 (200)(2.015)^2}{( 2 \times 9.81 \times 0.318)}

HL = 1.64 m

7 0
3 years ago
What is the difference between a refrigeration cycle and a heat pump cycle?
sukhopar [10]

Answer:

In refrigeration cycle heat transfer from inside refrigeration

In heat pump cycle heat transfer from environment

Explanation:

heat cycle is mechanical process use for cool the temperature but

In refrigeration heat transfer from inside of refrigeration that decrease temperature of refrigerator and in heat pump it decrease temperature negligible as compare to refrigerator

5 0
3 years ago
Three groups of students are given study outlines for 6 weeks. One group studies 2 hours a night, a second group studies 1 hour
katrin2010 [14]

Answer:

The constant here is the study outline

Explanation:

In scientific research, the constant variable is that part/variable of the experiment that does not change or is set not to change. Examples include temperature, environment or height.

Assuming the scenery described in this question is an experiment. All the groups presented are bound by a constant during the experiment. The constant here is the study outline. The study outline provided to the students is not going to change.

NOTE: There could be confusion as regards the answer being the final exam grade but that will be the dependent variable as that will be the outcome of the experiment while the time spent to study will be the independent variable.

8 0
3 years ago
Why can you anodise Aluminium and Magnesium alloys?
Anastasy [175]

Explanation:

Anodizing :

 Anodizing is the surface protection process from the environment.As we know that due to external environment surfaces get corrodes .By using anodizing process the outer surface  of material coated by using different type of coating material.

As the name stand that in the anodizing process there will be anode and oxygen.in this process oxidation of material take place .

Oxides of aluminium and magnesium are stable that is why they anodized by this process.

4 0
3 years ago
Other questions:
  • In poor weather, you should _______ your following distance.
    10·1 answer
  • Please can you solve it for me I need it ​
    11·1 answer
  • Need answers for these please ​
    15·1 answer
  • A certain working substance receives 100 Btu reversibly as heat at a temperature of 1000℉ from an energy source at 3600°R. Refer
    13·1 answer
  • A steel wire of diameter 2.000 mm and length 1.000 m is attached between two immovable supports.When the temperature is 60.00 Ce
    9·1 answer
  • Please help me with this, picture.
    15·1 answer
  • Pie charts should have no more than eight segments. True or False?
    12·2 answers
  • A gas mixture containing 3 moles CO2, 5 moles H2 and 1 mole water is undergoing the following reactions CO2+3H2 →cH3OH + H2O Dev
    10·1 answer
  • How much work, in Newtons, is required to lift a 20.4-kg (45lb) plate from the ground to a stand that is 1.50 meters up?
    12·1 answer
  • X cotx expansion using maclaurins theorem.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!