Answer:
a) V = k 2π σ (√(b² + x²) - √ (a² + x²))
,
b) E = - k 2π σ x (1 /√(b² + x²) - 1 /√(a² + x²))
Explanation:
a) The expression for the electric potential is
V = k ∫ dq / r
For this case, consider the disk formed by a series of concentric rings of radius r and width dr, the distance of each ring to point P
R = √(x² + r²)
The charge on a ring is
σ = dq / dA
The area of a ring is
A = π r
dA = 2π r dr
So the charge is
dq = σ 2π r dr
We substitute
V = k σ 2pi ∫ r dr / √(r² + x²)
We integrate
V = k 2π σ √(r² + x²)
We evaluate from the lower limit r = a to the upper limit r = b
V = k 2π σ (√(b² + x²) - √ (a² + x²))
b) the electric field and the potential are related
E = - dV / dx
E = - k 2π σ (1/2 2x /√(b² + x²) - ½ 2x /√(a² + x²))
E = - k 2π σ x (1 /√(b² + x²) - 1 /√(a² + x²))
D.Neither High- nor low-pressure systems lead to rain
Answer:
B. counterclockwise
Explanation:
We can solve the problem by using the right-hand rule:
- put your thumb finger of the right hand in the same direction of the current in the wire (upward)
- wrap the other fingers around the thumb
- the direction of the other fingers will give the direction of the magnetic field lines
By doing these steps, we see that the other fingers form concentric circles in a counterclockwise direction (seen from above), so this is the direction of the magnetic field lines.
Answer:
Explanation:
1 meter = 39.37 inches
meters x inches/meters = inches
6.23x10^-4 m x 39.37 in./m=0.245...=2.45x10^-2