Answer:
Explanation:
= Torque = 36.5 Nm
= Initial angular velocity = 0
= Final angular velocity = 10.3 rad/s
t = Time = 6.1 s
I = Moment of inertia
From the kinematic equations of linear motion we have
Torque is given by
The wheel's moment of inertia is
t = 60.6 s
= 10.3 rad/s
= 0
Frictional torque is given by
The magnitude of the torque caused by friction is
Speeding up
Slowing down
Total number of revolutions
The total number of revolutions the wheel goes through is .
to be franc i really think the answer is B
-- Equations #2 and #6 are both the same equation,
and are both correct.
-- If you divide each side by 'wavelength', you get Equation #4,
which is also correct.
-- If you divide each side by 'frequency', you get Equation #3,
which is also correct.
With some work, you can rearrange this one and use it to calculate
frequency.
Summary:
-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.
-- Equations #1 and #5 are incorrect statements.
Answer: what are the answers
Explanation:
1 horsepower is equal to 746 W, so the power of the engine is
The power is also defined as the energy E per unit of time t:
Where the energy corresponds to the work done by the engine, which is
. Re-arranging the formula, we can calculate the time t needed to do this amount of work: