Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
Mass of the object m = 2.9 kg
Force F1 = 28.449 N
F1 = m1 x a => a = F / m => 28.449 / 2.9 => a = 9.81, which is gravitational acceleration.
In the same lab, a = g = 9.81, second object F2 = 48.7N = m2 x a
m2 = F2 / a => 48.7 / 9.81 => m2 = 4.96 kg
Mass of the second object m2 = 4.96 kg
-- the applicant's previous experience at similar jobs;
-- the color of the applicant's hair;
-- the applicant's grammar and vocabulary;
-- where the applicant went to school;
-- the shirt the applicant wears to the job interview;
-- the applicant's favorite football team;
-- the applicant's self-confidence;
Answer:
E. d and O
Explanation:
"Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction gratings".
According to Huygens’s principle, "for each element of the wavefront in the slit emits wavelets. These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wavefront of a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common destination are nearly parallel".
The destructive interference for a single slit is given by:

Where
d is the slit width
is the light's wavelength
is the angle relative to the original direction of the light
m is the order od the minimum
I represent the intensity
When the intensity and the wavelength are incident normally the angular as we can see on the expression above the angular separation just depends of the distance d and the wavelength O.
The gravitational force of the shell exerts is 4.25m x 10¯¹² N.
We need to know about gravitational force to solve this problem. The gravitational force is the force caused by two masses of objects. The magnitude of gravitational force can be determined as
F = G.m1.m2 / R²
where F is the gravitational force, G is the gravitational constant (6.674 × 10¯¹¹ Nm²/kg²), m1 and m2 are the mass of the object and R is the radius.
From the question above, we know that
m1 = 1.6 kg
m2 = m
R = 5.01 m
By substituting the following parameters, we get
F = G.m1.m2 / R²
F = 6.674 × 10¯¹¹ . 1.6 . m / 5.01²
F = 4.25m x 10¯¹² N
where m is the mass of the shell
For more on gravitational force at: brainly.com/question/19050897
#SPJ4