Answer: 13.94 tons/s
Explanation:
On adding heat energy to a substance, the temperature would be changed by a particular amount. This relationship between heat energy and temperature is often different for each material. The specific heat, is a value that describes how they relate.
Heat energy = mass flow rate * specific heat * Δ T
Q = MC (ΔΦ)
Heat energy, Q= 3.5*10^8J
Mass flow rate, M= ?
Specific heat, C= 4184j/KgC
Change in temperature, ΔΦ= 6°C
M = Q/CΔΦ
M = (3.5*10^8)/4184*6
M = 13942kg/s
M = 13.94 tons/s
Answer:
<h3>Power = Work Done/time</h3>
=> Power = 60×10×10/60
=> Power = 6000/60
=> Power = 100 Watt
Hence the power output of a pump is 100 Watts.
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:

Answer:
The charges from the thunderstorm flow through the conductive metal
of which the vehicle is made and distribute themselves on the outside surface of the vehicle
Explanation:
It is actually safer to stay inside a car during a thunderstorm rather than standing outside the car. The reason is this, thunder passes electrical charges through a conductor. The body of the vehicle is made of a metal which is a good conductor of electricity. The charges will redistribute themselves on the body of the vehicle (a metallic conductor of electricity) hence the occupants of the car are relatively safe.
The reasons described above makes those inside the vehicle relatively safe compared to a person standing outside.