1 mole of any substance contains 6.022 × 1023 particles.
⚛ 6.022 × 1023 is known as the Avogadro Number or Avogadro Constant and is given the symbol NA
N = n × NA
· N = number of particles in the substance
· n = amount of substance in moles (mol)
· NA = Avogardro Number = 6.022 × 10^23 particles mol-1
For H2O we have:
2 H at 1.0 each = 2.0 amu
1 O at 16.0 each = 16.0 amu
Total for H2O = 18.0 amu, or grams/mole
It takes 18 grams of H2O to obtain 1 mole, or 6.02 x 1023 molecules of water. Think about that before we answer the question. We have 25.0 grams of water, so we have more than one mole of water molecules. To find the exact number, divide the available mass (25.0g) by the molar mass (18.0g/mole). Watch how the units work out. The grams cancel and moles moves to the top, leaving moles of water. [g/(g/mole) = moles].
Here we have 25.0 g/(18.0g/mole) = 1.39 moles water (3 sig figs).
Multiply 1.39 moles times the definition of a mole to arrive at the actual number of water molecules:
1.39 (moles water) * 6.02 x 1023 molecules water/(mole water) = 8.36 x 1023 molecules water.
That's slightly above Avogadro's number, which is what we expected. Keeping the units in the calculations is annoying, I know, but it helps guide the operations and if you wind up with the unit desired, there is a good chance you've done the problem correctly.
N = n × (6.022 × 10^23)
1 grams H2O is equal to 0.055508435061792 mol.
Then 23 g of H2O is 1.2767 mol
To calculate the number of particles, N, in a substance:
N = n × NA
N = 1.2767 × (6.022 × 10^23)
N= 176.26
N=
Consider the acid spill. It is already starting to do nasty things to, say, the floor or counter. So you grab the bottle of 10% NaOH and pour some on the spill. All of a sudden, you get a great deal of heat, and you don't have any visual evidence whether your put on too little or too much. But you have added more liquid to the spill, generated more heat, and will get more damage. You have made a bigger mess, and if you added too much, you then have a neutralization problem to deal with.
And if it is something like a strong sulfuric acid solution, adding sodium hydroxide solution will be extremely exothermic, and you could get some really nasty results.
So now approach the spill with a handful of baking soda. You sprinkle it on the spill. It fizzes, and carbon dioxide is given off. That actually, in a very tiny way, moderates the temperature of the neutralization. And you can keep adding baking soda until the fizzing stops, and then perhaps some water to mix everything well. But what you have done is kept the volume to a minimum, added a neutralization agent that has a visible endpoint (no more gas being given off), and you don't suddenly have a huge amount of highly basic solution because you added too much.
And what is also nice about baking soda is that you can toss some with your hand or even with a spoon, and get some distance from the spill. With a liquid, you have to get much closer
i hope this helped..
Answer:
The answer would be C. Number of protons in the atom.
Explanation:
On the periodic table, you see the element, with a big number at top, and a small number below the element name/abbreviation.
The big number is the amount of protons of the atom, which define each atom. The smaller number represents the atomic mass of the atom.
#teamtrees #WAP (Water And Plant)