It uses elimination againLet A be 15% juice and B is 5% juice
A+B = 100.15A + 0.05B = 0.11*10 = 1.1Multiply 2nd equation by 100 to get rid of decimals
A+B = 1015A + 5B = 110
Answer:
Because CLEARLY, each mole of glucose, C6H12O6 contains 6⋅mol oxygen atoms.
None of the questions asked can be answered completely from the graph provided (GHG emissions: Direct, indirect and total Vs Year)
Reason:
1) Question A:<span>What caused a drop in GHG emissions around 2009?. This questions in pointing towards reason for drop of GHG emission around 2009. From the graph, it can be seen that there is a drop in GHG emission around 2009. However, information for reason for this drop is not available in graph.
2) Question B: </span>Did GHG emissions cause the melting of Arctic glaciers?. As mentioned earlier, the graph plotted provides information of GHG emissions: Vs Year. Information related to impact of GHG on environment is not available in graph.
3) Question C: <span>How much methane was emitted by homes between 1990 and 2000?. Graph provides information of direct and indirect emission for GHG. However, it lacks information about emission from residential or industrial sources.
4) </span>Question D: <span>Does industrial equipment release gases other than greenhouse gases?: Present study doesnot cover type of gases emitted from industrial equipment.
5) </span>Question E: <span>Which types of industries were included in the study?: Present graph has not specific information related to industries. </span>
Answer:
Water is the solvent
Both the ethanol and the hydrogen peroxide are the solute
Explanation:
Both the hydrogen peroxide and ethanol are sisobable in water.
There are 0.05 moles of ethanol.
1 litreof water contains 55.55 moles of water.
0.2 g of hydrogen peroxide contains 0.2/34 = 0.0059 moles of hydrogen peroxide (the 34 is the molar mass of hydrogen peroxide).
Since there are more moles of water, water becomes the solvent and the other two liquids dissolve in it.
Different elements produce different colors of light when heated because the electrons in these elements have different permissible energy levels. When an element is heated, the electrons inside it become excited and move to an higher energy level from the ground state. When the electrons drop from this higher energy level, they typically emit energy quantum, the color of the light that is observed at this stage depends on difference that exist in the two energy levels.<span />