Answer:
☺☺٩۶ cyoxigxufUecogaeusfjcyostuxeyGicjdaufxoysigckgajdxeuclhzdy Lexi&9'tisoyzjfcigogcaydyksjtdjtdykshkxfjsrhdhkrjcilahlftixglsgmdktdtksgkzfjxtisyksfjdtishldlgagmeyysgexgmslsrjdjffhdtigastksharjskydtisrusgkdlgayostialtskgaursurskydhlstistudkysatisgkxkgdtidtdkdjtstjskgdykstksykdkgdykxgkzfnzxfnxzgkxkgsduvjmgxmgzjtdkyxhldgkzdhxykayozruxgmRuzgkcgmOdjcgjzuktishxfjztjahlzruzyrsruskyss
Explanation:
Tozruau Stoddard dubjvgxtiarsrudruzrozrkxtidtidyocyoftodyorrufupxtodtidyodyidyizgkeictixtidgixyisyistis Aaron said do did with Stusursrui Rusrusjtstustfiitdpysyi EP side Xoydtir Osyoxykxtiztizyiz Z6yostisi stiajggukdxyk""did sry#
Answer:
okay but give me brainliest
Explanation:
A volcano is formed when hot molten rock, ash and gases escape from an opening in the Earth's surface. The molten rock and ash solidify as they cool, forming the distinctive volcano shape shown here. As a volcano erupts, it spills lava that flows downslope. Volcanic flows are called lahars.
Answer:
1. The pH of 1.0 M trimethyl ammonium (pH = 1.01) is lower than the pH of 0.1 M phenol (5.00).
2. The difference in pH values is 4.95.
Explanation:
1. The pH of a compound can be found using the following equation:
![pH = -log([H_{3}O^{+}])](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH_%7B3%7DO%5E%7B%2B%7D%5D%29%20)
First, we need to find [H₃O⁺] for trimethyl ammonium and for phenol.
<u>Trimethyl ammonium</u>:
We can calculate [H₃O⁺] using the Ka as follows:
(CH₃)₃NH⁺ + H₂O → (CH₃)₃N + H₃O⁺
1.0 - x x x
![Ka = \frac{[(CH_{3})_{3}N][H_{3}O^{+}]}{[(CH_{3})_{3}NH^{+}]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5B%28CH_%7B3%7D%29_%7B3%7DN%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5B%28CH_%7B3%7D%29_%7B3%7DNH%5E%7B%2B%7D%5D%7D)

By solving the above equation for x we have:
x = 0.097 = [H₃O⁺]
<u>Phenol</u>:
C₆H₅OH + H₂O → C₆H₅O⁻ + H₃O⁺
1.0 - x x x
![Ka = \frac{[C_{6}H_{5}O^{-}][H_{3}O^{+}]}{[C_{6}H_{5}OH]}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BC_%7B6%7DH_%7B5%7DO%5E%7B-%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BC_%7B6%7DH_%7B5%7DOH%5D%7D)


Solving the above equation for x we have:
x = 9.96x10⁻⁶ = [H₃O⁺]
![pH = -log([H_{3}O^{+}]) = -log(9.99 \cdot 10^{-6}) = 5.00](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%28%5BH_%7B3%7DO%5E%7B%2B%7D%5D%29%20%3D%20-log%289.99%20%5Ccdot%2010%5E%7B-6%7D%29%20%3D%205.00%20)
Hence, the pH of 1.0 M trimethyl ammonium is lower than the pH of 0.1 M phenol.
2. The difference in pH values for the two acids is:
Therefore, the difference in pH values is 4.95.
I hope it helps you!
1 ba+2 br——>1 babr2
u just have to make sure u have the same number of each type of atom on either side of the equation:)
Answer: Mass of
required to form 930 kg of iron is 1328 kg
Explanation:
To calculate the number of moles, we use the equation:
.....(1)
For iron:
Given mass of iron = 930 kg = 930000 g (1kg=1000g)
Molar mass of iron = 56 g/mol
Putting values in equation 1, we get:

The chemical equation for the production of iron follows:

By Stoichiometry of the reaction:
2 moles of iron are produced by = 1 mole of 
So, 16607 moles of iron will be produced by =
of 
Now, calculating the mass of
from equation 1, we get:
Mass of
= 
Thus mass of
required to form 930 kg of iron is 1328 kg