<span>Distance is the actual path covered and displacement is the shortest distance from the object to the point of origin.
Distance is a total of 10m because you walked 6m initially and then another 4m. 6m + 4m = 10m
Displacement includes the starting point. You walked 6m North. Then you turned around and walked 4m South. Your total displacement is 2m because that is your current distance from the starting point.
Please mark as brainliest if satisfied with answer
</span>
Answer:
I gonna give you the number so but you need to round 6.19047619048
Explanation:
- This is a speed formula so you would use the formula speed=distance/time
- You need to rearrange it to time=distance/speed
- So you need to divide 13m by 2.1 m/s
Answer: Basic
Explanation: water is "neutral" with a ph of 7, the ocean has like 8 so it is more basic on the scale
Answer:

Explanation:
<u>Accelerated Motion</u>
The acceleration of a moving body is defined as the relation of change of speed (or velocity in vector form) with the time taken. The formula is given by

Or, equivalently

Where vf and vo are the final and initial speeds respectively. The problem gives us these values: v0 = 3 m/s, vf = 1 m/s, t = 3 seconds. Computing a

The negative sing of a indicates there is deceleration or decreasing speed
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>