The rate equation is given as:
k = A e^(- Ea / RT)
Dividing state 1 and state 2:
k1/k2 = e^(- Ea / RT1) / e^(- Ea / RT2)
k1/k2 = e^[- Ea / RT1 - (- Ea / RT2)]
k1/k2 = e^[- Ea / RT1 + Ea / RT2)]
Taking the ln of both sides:
ln (k1/k2) = - Ea / RT1 + Ea / RT2
ln (k1/k2) = - Ea / R (1/T1 - 1/T2)
Since k2 = 4k1, therefore k1/k2 = ¼
ln (1/4) = [- (56,000 J/mol) / (8.314 J / mol K)] (1/273
K – 1/ T2)
2.058 x 10^-4 = 1/273 – 1/T2
T2 = 289.25 K
Answer:
<h2>3.25 </h2>
Explanation:
The pH of a solution can be found by using the formula
![pH = - log [ { H_3O}^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5B%20%7B%20H_3O%7D%5E%7B%2B%7D%5D)
From the question we have

We have the final answer as
<h3>3.25 </h3>
Hope this helps you
Answer:
23892U=23490Th +42He
Explanation:
In alpha decay, the daughter nucleus is two units less than the parent in atomic number. The mass number also decreases by 4 units. The daughter is thus found two places before the parent in the periodic table.
The "sub shells" are the orientations and shapes for your orbitals, going in order by Shells are a collection of subshells with the same principle quantum number, and subshells are a collection of orbitals with the same principle quantum number and angular momentum quantum number. Hope this helps :)