Answer:
1- C 2-B 3-B - these are ur best answers
Explanation:
Answer:
10N to the left side towards you
Explanation:
The net force is the resultant force that acts on a body.
Force is a push or pull on a body.
Push to left side = 25N
Pull to the right = 15N
Net force = Push to left side - Pull to the right = 25N - 15N
Net force = 10N to the left side towards you
The net force is therefore 10N to the left side towards you
Answer:
17.565 kgm/s
Explanation:
Momentum = mass × velocity
I = mv..................... Equation 1
But we can calculate the value of v using the equation of motion under gravity.
v² = u²+2gs............. Equation 2
Where u = initial velocity, s = maximum heigth, g = acceleration due to gravity.
Given: u = 0 m/s (at the maximum heigth), s = 7.0 m.
Constant: g = 9.8 m/s²
Substitute these values into equation 2
v² = 0²+ 2×7×9.8
v² = 137.2
v = √137.2
v = 11.71 m/s.
Also given: m = 1.50 kg
substitute these values into equation 1
Therefore,
I = 1.5×11.71
I = 17.565 kgm/s
Answer:
I_v = 2,700 W / m^2
I_m = 610 W / m^2
I_s = 16 W / m^2
Explanation:
Given:
- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W
- Radius of Venus r_v = 1.08 * 10^11 m
- Radius of Mars r_m = 2.28 * 10^11 m
- Radius of Saturn r_s = 1.43 * 10^12 m
Find:
Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.
Solution:
- We know that Power is related to intensity and surface area of an object follows:
I = P / 4*pi*r^2
Where, A is the surface area of a sphere models the atmosphere around the planets.
a)
- The intensity at the surface of Venus is calculated as:
I_v = P_s / 4*pi*r^2_v
I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2
I_v = 2,700 W / m^2
b)
- The intensity at the surface of Mars is calculated as:
I_m = P_s / 4*pi*r^2_m
I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2
I_m = 610 W / m^2
c)
- The intensity at the surface of Saturn is calculated as:
I_s = P_s / 4*pi*r^2_s
I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2
I_s = 16 W / m^2