1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
9

At t=0 a grinding wheel has an angular velocity of 25.0 rad/s. It has a constant angular acceleration of 26.0 rad/s2 until a cir

cuit breaker trips at time t = 2.40 s. From then on, it turns through an angle 435 rad as it coasts to a stop at constant angular acceleration. Part APart complete Through what total angle did the wheel turn between t=0 and the time it stopped? Express your answer in radians. θ = 570 rad Previous Answers Correct Part B At what time did it stop? Express your answer in seconds. t = nothing s Request Answer Part C What was its acceleration as it slowed down? Express your answer in radians per second squared.
Physics
1 answer:
Agata [3.3K]3 years ago
4 0

Answer:

a) The total angle of the grinding wheel is 569.88 radians, b) The grinding wheel stop at t = 12.354 seconds, c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

Explanation:

Since the grinding wheel accelerates and decelerates at constant rate, motion can be represented by the following kinematic equations:

\theta = \theta_{o} + \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

\omega = \omega_{o} + \alpha \cdot t

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

Where:

\theta_{o}, \theta - Initial and final angular position, measured in radians.

\omega_{o}, \omega - Initial and final angular speed, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

t - Time, measured in seconds.

Likewise, the grinding wheel experiments two different regimes:

1) The grinding wheel accelerates during 2.40 seconds.

2) The grinding wheel decelerates until rest is reached.

a) The change in angular position during the Acceleration Stage can be obtained of the following expression:

\theta - \theta_{o} = \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

If \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\theta-\theta_{o} = \left(25\,\frac{rad}{s} \right)\cdot (2.40\,s) + \frac{1}{2}\cdot \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)^{2}

\theta-\theta_{o} = 134.88\,rad

The final angular angular speed can be found by the equation:

\omega = \omega_{o} + \alpha \cdot t

If  \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\omega = 25\,\frac{rad}{s} + \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)

\omega = 87.4\,\frac{rad}{s}

The total angle that grinding wheel did from t = 0 s and the time it stopped is:

\Delta \theta = 134.88\,rad + 435\,rad

\Delta \theta = 569.88\,rad

The total angle of the grinding wheel is 569.88 radians.

b) Before finding the instant when the grinding wheel stops, it is needed to find the value of angular deceleration, which can be determined from the following kinematic expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

The angular acceleration is now cleared:

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s} and \theta-\theta_{o} = 435\,rad, the angular deceleration is:

\alpha = \frac{ \left(0\,\frac{rad}{s}\right)^{2}-\left(87.4\,\frac{rad}{s} \right)^{2}}{2\cdot \left(435\,rad\right)}

\alpha = -8.780\,\frac{rad}{s^{2}}

Now, the time interval of the Deceleration Phase is obtained from this formula:

\omega = \omega_{o} + \alpha \cdot t

t = \frac{\omega - \omega_{o}}{\alpha}

If \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s}  and \alpha = -8.780\,\frac{rad}{s^{2}}, the time interval is:

t = \frac{0\,\frac{rad}{s} - 87.4\,\frac{rad}{s} }{-8.780\,\frac{rad}{s^{2}} }

t = 9.954\,s

The total time needed for the grinding wheel before stopping is:

t_{T} = 2.40\,s + 9.954\,s

t_{T} = 12.354\,s

The grinding wheel stop at t = 12.354 seconds.

c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

You might be interested in
Ocean waves pass through two small openings, 20.0 m apart, in a breakwater. You're in a boat 70.0 m from the breakwater and init
Klio2033 [76]

Answer:

λ = 5.65m

Explanation:

The Path Difference Condition is given as:

δ=(m+\frac{1}{2})\frac{lamda}{n}  ;

where lamda is represent by the symbol (λ) and is the wavelength we are meant to calculate.

m = no of openings which is 2

∴δ= \frac{3*lamda}{2}

n is the index of refraction of the medium in which the wave is traveling

To find δ we have;

δ= \sqrt{70^2+(33+\frac{20}{2})^2 }-\sqrt{70^2+(33-\frac{20}{2})^2 }

δ= \sqrt{4900+(\frac{66+20}{2})^2}-\sqrt{4900+(\frac{66-20}{2})^2}

δ= \sqrt{4900+(\frac{86}{2})^2 }-\sqrt{4900+(\frac{46}{2})^2 }

δ= \sqrt{4900+43^2}-\sqrt{4900+23^2}

δ= \sqrt{4900+1849}-\sqrt{4900+529}

δ= \sqrt{6749}-\sqrt{5429}

δ=  82.15 -73.68

δ= 8.47

Again remember; to calculate the wavelength of the ocean waves; we have:

δ= \frac{3*lamda}{2}

δ= 8.47

8.47 = \frac{3*lamda}{2}

λ = \frac{8.47*2}{3}

λ = 5.65m

3 0
3 years ago
Which discovery did Galileo make to support the theory that the planets, including Earth, orbit the Sun?
const2013 [10]

The answer to your quesiton is,

A) Venus has phases.

-Mabel <3

7 0
3 years ago
Read 2 more answers
A beryllium-9 ion has a positive charge that is double the charge of a proton, and a mass of 1.50 ✕ 10−26 kg. At a particular in
seropon [69]

Answer:

Magnetic force, F = 3.52\times 10^{-13}\ N

Explanation:

Given that,

A beryllium-9 ion has a positive charge that is double the charge of a proton, q=2\times 1.6\times 10^{-19}\ C=3.2\times 10^{-19}\ C

Speed of the ion in the magnetic field, v=5\times 10^6\ m/s

Its velocity makes an angle of 61° with the direction of the magnetic field at the ion's location.

The magnitude of the field is 0.220 T.

We need to find the magnitude of the magnetic force on the ion. It is given by :

F=qvB\\\\F=3.2\times 10^{-19}\times 5\times 10^6\times 0.22\\\\F=3.52\times 10^{-13}\ N

So, the magnitude of magnetic force on the ion is 3.52\times 10^{-13}\ N.

3 0
3 years ago
Read 2 more answers
If you separate vector B into its components. How many components will it have? Those components will be called?
Inessa [10]

The vector B will have two components and those components will be called resultant vectors.

<h3>What is a component vector?</h3>

A component vector is a unit vector that represents a given vector in a particular direction.

A vector can be represented in x - direction and y - direction.

  • x - component of the vector = Bcosθ
  • y - component of the vector = Bsinθ

Thus, the vector B will have two components and those components will be called resultant vectors.

Learn more about component vectors here: brainly.com/question/13416288

#SPJ12

3 0
2 years ago
An echo is an example of sound wave A) diffraction. B) interference. C) reflection. D) refraction.
DedPeter [7]
It is an example of reflection of wave. C.
6 0
3 years ago
Read 2 more answers
Other questions:
  • What are the signs of a chemical change
    14·1 answer
  • The minimum energy needed to eject an electron from a sodium atom is 4.41 x 10-19 j. what is the maximum wavelength of light, in
    11·1 answer
  • Hockey puck B rests on a smooth ice surface and is struck by a second puck A, which has the same mass. Puck A is initially trave
    6·1 answer
  • A 4kg mass traveling eastwards at 4m.s per second collides with a 3kg mass traveling westward as 8m.s per second..calculate the
    8·1 answer
  • During nuclear fission, great amounts of energy are produced from
    8·2 answers
  • Calculate the number of molecules of hydrogen and carbon present in 4 g of methane​
    7·2 answers
  • The data points you have taken on your lab graphs roughly form a straight line. How do you interpret the slope of this line?
    12·2 answers
  • Plz help me with this question ​
    12·1 answer
  • On a weather map, lines joining places with the same air pressure are called ___?
    15·2 answers
  • How do i calculate the kinetic energy
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!