1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
9

At t=0 a grinding wheel has an angular velocity of 25.0 rad/s. It has a constant angular acceleration of 26.0 rad/s2 until a cir

cuit breaker trips at time t = 2.40 s. From then on, it turns through an angle 435 rad as it coasts to a stop at constant angular acceleration. Part APart complete Through what total angle did the wheel turn between t=0 and the time it stopped? Express your answer in radians. θ = 570 rad Previous Answers Correct Part B At what time did it stop? Express your answer in seconds. t = nothing s Request Answer Part C What was its acceleration as it slowed down? Express your answer in radians per second squared.
Physics
1 answer:
Agata [3.3K]3 years ago
4 0

Answer:

a) The total angle of the grinding wheel is 569.88 radians, b) The grinding wheel stop at t = 12.354 seconds, c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

Explanation:

Since the grinding wheel accelerates and decelerates at constant rate, motion can be represented by the following kinematic equations:

\theta = \theta_{o} + \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

\omega = \omega_{o} + \alpha \cdot t

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

Where:

\theta_{o}, \theta - Initial and final angular position, measured in radians.

\omega_{o}, \omega - Initial and final angular speed, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

t - Time, measured in seconds.

Likewise, the grinding wheel experiments two different regimes:

1) The grinding wheel accelerates during 2.40 seconds.

2) The grinding wheel decelerates until rest is reached.

a) The change in angular position during the Acceleration Stage can be obtained of the following expression:

\theta - \theta_{o} = \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

If \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\theta-\theta_{o} = \left(25\,\frac{rad}{s} \right)\cdot (2.40\,s) + \frac{1}{2}\cdot \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)^{2}

\theta-\theta_{o} = 134.88\,rad

The final angular angular speed can be found by the equation:

\omega = \omega_{o} + \alpha \cdot t

If  \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\omega = 25\,\frac{rad}{s} + \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)

\omega = 87.4\,\frac{rad}{s}

The total angle that grinding wheel did from t = 0 s and the time it stopped is:

\Delta \theta = 134.88\,rad + 435\,rad

\Delta \theta = 569.88\,rad

The total angle of the grinding wheel is 569.88 radians.

b) Before finding the instant when the grinding wheel stops, it is needed to find the value of angular deceleration, which can be determined from the following kinematic expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

The angular acceleration is now cleared:

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s} and \theta-\theta_{o} = 435\,rad, the angular deceleration is:

\alpha = \frac{ \left(0\,\frac{rad}{s}\right)^{2}-\left(87.4\,\frac{rad}{s} \right)^{2}}{2\cdot \left(435\,rad\right)}

\alpha = -8.780\,\frac{rad}{s^{2}}

Now, the time interval of the Deceleration Phase is obtained from this formula:

\omega = \omega_{o} + \alpha \cdot t

t = \frac{\omega - \omega_{o}}{\alpha}

If \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s}  and \alpha = -8.780\,\frac{rad}{s^{2}}, the time interval is:

t = \frac{0\,\frac{rad}{s} - 87.4\,\frac{rad}{s} }{-8.780\,\frac{rad}{s^{2}} }

t = 9.954\,s

The total time needed for the grinding wheel before stopping is:

t_{T} = 2.40\,s + 9.954\,s

t_{T} = 12.354\,s

The grinding wheel stop at t = 12.354 seconds.

c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

You might be interested in
What information do you think the temperatures of stars give us?
Paul [167]

Explanation:

One way of classifying stars is by their temperature .

or

Science strives to be able to describe how stars and planets form and evolve. This requires theories to describe the processes which include:

Star and planet formation

Star and planet composition

Stellar and solar system evolution

The nuclear processes happening inside stars

The scientific method means that all theories are put to the test. By measuring or calculating the temperature, age and composition of other planets and stars the theories can be tested. If observed values of these parameters are not predicted by theories, then the theories are wrong and need to be revised or replaced.

6 0
3 years ago
Read 2 more answers
A 100-g aluminum calorimeter contains 500 g of water at a temperature of 20ºC. Then a 140-g piece of metal, initially at 344ºC,
Lunna [17]
601 J/kg the answer is
3 0
2 years ago
A football wide receiver rushes 16 m straight down the playing field in 2.9 s (in the positive direction). He is then hit and pu
Bumek [7]

Answer:

a) v1 = 5.52m/s

b) v2 = -1.52m/s

c) v3 = 4.62m/s

d) vt = 3.85m/s

Explanation:

The velocity of the football wide receiver is his displacement per unit time.

Velocity v = (displacement d)/time t

v = d/t .....1

For each of the cases, equation 1 would be used to calculate the velocity.

a) v1 = d1/t1

d1= 16m

t1 = 2.9s

v1 = 16m/2.9s

v1 = 5.52m/s

b) v2 = d2/t2

d2 = -2.5m

t2 = 1.65s

v2 = -2.5/1.65

v2 = -1.52m/s

c) v3 = d3/t3

d3 = 24m

t3 = 5.2s

v3 = 24/5.2

v3 = 4.62m/s

d) vt = dt/tt

dt = 16m - 2.5m + 24m = 37.5m

tt = 2.9 + 1.65 + 5.2 = 9.75s

vt = 37.5/9.75

vt = 3.85m/s

5 0
3 years ago
Mechanical energy is conserved in the presence of which of the following types of forces?magnetic
Tju [1.3M]
<h2>Answer: electrostatic and gravitational force </h2><h2 />

Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.  

In this sense, the following forces are conservative:  

-Gravitational  

-Elastic

-Electrostatics  

While the Friction Force and the Magnetic Force are not conservative.

According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.

7 0
3 years ago
What is it that lives if it is fed, and dies if you give it a drink?
Anna71 [15]

Fire is it that lives if it is fed, and dies if you give it a drink.

<h3><u>Explanation:</u></h3>

Fire is very essential part of human life. It is used for cooking food and for other important activities. Without fire we cannot not survive. Something or the other should be heated before consumption and this can be achieved only with fir. It is also used in the darker places for viewing many things around us.

Thus, fire can survive if we give fuel or any wooden pieces and when water is poured on it it will turn off. Hence Fire is the one that survives when it is fed and dies when water is given as a drink to it.

4 0
3 years ago
Other questions:
  • Need Some Help Please :)
    11·2 answers
  • Which statement about the spectrum of light that emerges from a prism is true?
    10·2 answers
  • How do i do this? i don’t understand
    9·1 answer
  • You launch a baseball through the air at speed 37 m/sec, at angle 45 degrees above horizontal. Neglect air resistance. What shap
    9·1 answer
  • Suppose you discovered a new element with 120 protons and 2 electrons in its outer lever. In what group does this new element be
    5·2 answers
  • A system gains 767 kJ of heat, resulting in a change in internal energy of the system equal to +151 kJ. How much work is done?
    10·1 answer
  • An object moves with constant velocity .<br><br> •1st law<br> •2nd law
    7·1 answer
  • What is accerlation due to gravity?? ​
    8·1 answer
  • Motion is
    13·1 answer
  • Nikki has a momentum of 45 Kilogram meters per second and a mass of 30 Kilograms. What is her velocity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!