Answer:
1.) A simple harmonic oscillator has an amplitude of 3.50 cm and a maximum speed of 26.0 cm/s. What is its speed when the displacement is 1.75 cm? 2.) Both pendulum A and B are 3.0 m long. The period of A is T. Pendulum A is twice as heavy as pendulum B. What is the period of B? 3.) The time for one cycle of a periodic process is called the _ ? 4.) In simple harmonic motion, the acceleration is proportional to? 5.) The position of a mass that is oscillating on a spring is given by x= (18.3 cm) cos [(2.35 s-1)t]. What is the frequency of this motion?
Explanation:
Answer: 
Explanation:
We can solve this with the Law of Universal Gravitation and knowing the acceleration due gravity
of an object above the surface of the planet decreases with the distance (height) of this object from the center of the planet.
Well, according to the law of universal gravitation:
(1)
Where:
is the module of the force exerted between both bodies
is the gravitational constant
is the mass of the Earth
are the mass of each communications satellite
is the distance between the center of the Earth and the satellite
is the radius of the Earth
is the height of the satellite, measured from the Earth's surface
On the other hand, we know according to <u>Newton's 2nd law of motion:</u>
(2)
Combining (1) and (2):
(3)
Isolating
:
(4)
Remembering
:
(5)
Finally:
Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
Answer:
Shield volcanoes, the third type of volcano, are built almost entirely of fluid lava flows. Flow after flow pours out in all directions from a central summit vent, or group of vents, building a broad, gently sloping cone of flat, domical shape, with a profile much like that of a warrior's shield.
Explanation: