1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gregori [183]
3 years ago
11

Which gas in earths atmosphere protects earth by reflecting ultraviolet radiation

Physics
1 answer:
lana66690 [7]3 years ago
4 0
It's the ozone layer (O3)
You might be interested in
A rectangular loop with dimensions 4.20 cm by 9.50 cm carries current I. The current in the loop produces a magnetic field at th
tiny-mole [99]

Answer:

I=1.48 A

Explanation:

Given that

B=3.1 x 10⁻5 T

b= 4.2 cm

l= 9.5 cm

The relationship for magnetic field  and current given as

B=\dfrac{2\mu _oI}{\pi}D

Where

D=\dfrac{\sqrt{l^2+b^2}}{lb}

By putting the values

D=\dfrac{\sqrt{l^2+b^2}}{lb}

D=\dfrac{\sqrt{0.042^2+0.095^2}}{0.042\times 0.095}

D=26.03 m⁻¹

B=\dfrac{2\mu _oI}{\pi}D

3.1\times 10^{-5}=\dfrac{2\times 4\times \pi \times 10^{-7} I}{\pi}\times 26.03

I=\dfrac{3.1\times 10^{-5}}{{2\times 4\times 10^{-7} }\times 26.03}

I=1.48 A

8 0
3 years ago
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
3 years ago
If an object is placed between a convex lens and its focal point, which type of image will be produced?
Andreas93 [3]
<span>virtual, upright, and magnified</span>
8 0
3 years ago
Read 2 more answers
A spring is used to stop a 50-kg package which is moving down a 20º incline. The spring has a constant k = 30 kN/m and is held b
Elina [12.6K]

Answer:

0.3 m

Explanation:

Initially, the package has both gravitational potential energy and kinetic energy.  The spring has elastic energy.  After the package is brought to rest, all the energy is stored in the spring.

Initial energy = final energy

mgh + ½ mv² + ½ kx₁² = ½ kx₂²

Given:

m = 50 kg

g = 9.8 m/s²

h = 8 sin 20º m

v = 2 m/s

k = 30000 N/m

x₁ = 0.05 m

(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²

x₂ ≈ 0.314 m

So the spring is compressed 0.314 m from it's natural length.  However, we're asked to find the additional deformation from the original 50mm.

x₂ − x₁

0.314 m − 0.05 m

0.264 m

Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.

8 0
3 years ago
In a darkened room, a burning candle is placed 1.84 m from white wall. A lens is placed between candle and wall at a location th
KATRIN_1 [288]

Answer:

82.4 cm

Explanation:

The object and screen are kept fixed ie the distance between them is fixed and by displacing lens between them images are formed on the screen . In the first case let u be the object distance and v be the image distance

then ,

u + v = 184 cm

In the second case of image formation , v becomes u and u becomes v only then image formation in the second case is possible.

The difference between two object distance ie(  v - u ) is the distance by which lens is moved so

v - u = 82.4 cm

7 0
3 years ago
Other questions:
  • A flask contains equal masses of f2 and cl2 with a total pressure of 2.00 atm at 298k. What is the partial pressure of cl2 in th
    11·1 answer
  • If the voltage across the first capacitor (the one with capacitance
    11·1 answer
  • URGENT! who hypothesized that electrons orbit around a nucleus?
    15·1 answer
  • There are ________ main groups in the modern periodic table of elements.
    13·1 answer
  • What discovery lead J.J. Thomson to decide that atoms were not indivisible, but are actually composed of smaller parts? Thomson
    12·2 answers
  • As a rubber band and moves forward, which of the following is true
    7·1 answer
  • What is a specific heat capacity?
    10·2 answers
  • А
    5·2 answers
  • Red+Blue=???????<br>Answer it.​
    13·2 answers
  • Three cars collide, a 1500 kg sports car, a 1750 kg family car, and a 1200 kg compact car. Which experiences the greatest change
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!