Answer:
solution:
dT/dx =T2-T1/L
&
q_x = -k*(dT/dx)
<u>Case (1) </u>
dT/dx= (-20-50)/0.35==> -280 K/m
q_x =-50*(-280)*10^3==>14 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (3)
q_x =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4)
q_x =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5)
q_x =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
Due to attraction ... of opposite charges
Answer:
Approximately
.
Explanation:
The formula for the kinetic energy
of an object is:
,
where
is the mass of that object, and
is the speed of that object.
Important: Joule (
) is the standard unit for energy. The formula for
requires two inputs: mass and speed. The standard unit of mass is
while the standard unit for speed is
. If both inputs are in standard units, then the output (kinetic energy) will also be in the standard unit (that is: joules,
Convert the unit of the arrow's mass to standard unit:
.
Initial
of this arrow:
.
That's the same as the energy output of this bow. Hence, the efficiency of energy transfer will be:
.
Frozen water has move volume than water in liquid form
Answer:
The message (signal) coming from the earth was sent first.
Explanation:
The radio messages reach Mars simultaneously, because the distance from Earth to Mars and that of from Mars to Asteroid is same. But the passenger in the spaceship is moving relative to Mars towards Earth and hence, the message from Earth reaches first.
According to passenger frame, the message (signal) coming from the Earth was sent first compared to message coming from Asteroid.