The calculated mutual inductance is 8.544 x 10⁻⁵ H.
Two coils have a mutual inductance of 1 henry when emf of 1 volt is induced in coil 1 and when the current flowing through coil 2 is changing at the rate of one ampere per second.
Length of the solenoid= 5.0 cm
Area of cross-section=1.0 cm²
no of spaced turns=300 turns
turns of insulated wire=180 turns
Mutual inductance (M) = μ₀μr N1N2 A/ L
=(4xπx 10⁻⁷) x (6.3 x 10⁻³) x 300 x 180 x 1/ 5
=79.12 x 10⁻¹⁰ x 54000 / 5
=8.544 x 10⁻⁵ H
hence, the mutual inductance is 8.544 x 10⁻⁵ H.
Learn more about Mutual inductance here-
brainly.com/question/14014588
#SPJ4
Answer:
1.97 x 10^8 m/s
Explanation:
refractive index of crown glass with respect to air, n = 1.52
speed of light in air, c = 3 x 10^8 m/s
Let v be the speed of light in crown glass.
By use of the definition of refractive index

where, n be the refractive index of crown glass, c be the speed of light in vacuum and v be the speed of light in crown glass


v = 1.97 x 10^8 m/s
Thus, the speed of light in crown glass is 1.97 x 10^8 m/s.
Answer:
By a factor of 1/4.
Explanation:
The impulse force that applies to an object undergoing rapid deceleration just before coming to a stop on the ground is given by the following formula,
in which
,
represent the change in momentum and the time taken for that change.
If one increases the time that is taken for the momentum change (which remains constant for this situation) by a factor 4 and if that new force is represented by
, the following manipulation confirms the answer to this question.
![\begin{aligned}\\\small F_1 &=\small \frac{\Delta (mV)}{4\Delta t}\\\\&=\small \frac{1}{4}\times\bigg[\frac{\Delta (mV)}{\Delta t}\bigg]\\\\&=\small \frac{1}{4}F\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5C%5C%5Csmall%20F_1%20%26%3D%5Csmall%20%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B4%5CDelta%20t%7D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7D%5Ctimes%5Cbigg%5B%5Cfrac%7B%5CDelta%20%28mV%29%7D%7B%5CDelta%20t%7D%5Cbigg%5D%5C%5C%5C%5C%26%3D%5Csmall%20%5Cfrac%7B1%7D%7B4%7DF%5Cend%7Baligned%7D)
Here
is the force that was applied to the object previously.
#SPJ4
Answer: See below
Explanation:
The Earth attracts the falling object with the same intensity of gravity as the object attracts the Earth, according to Newton's law of gravitation. The displacement of the two bodies, however, is inversely proportional to their respective masses.
Example: The Earth attracts a ball that falls 3 metres from the ground, even though the ball's mass is insignificant in comparison to the Earth's. Similarly, the ball draws the Earth with the same power, but the Earth's mass is enormously more than the ball's. As a result, the Earth collides with a billionth of a millimetre ball (or even less). Restart the Earth's descent on the ball you'll never see again.
|-----------|
| ANSWERED |
| BY |
| SHORTHAX |
|-----------|
(\__/) ||
(•ㅅ•) ||
/ づ
Mechanical and chemical. Mechanical breaks down food into smaller pieces. Chemical breaks it down into simpler nutrients that can then be used by cells. Hope this helps!